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ABSTRACT

A numerical method for obtaining accurate shape design sensitivity
information for built-up structures is developed and demonstrated
through analysis of examples. Shape design sensitivities in the past
have been obtained using a boundary approach to shape design sensitivity
analysis and the finite element method of structural analysis. In the
boundary approach, shape design sensitivity formulas have been expressed
as contour integrals, using integration by parts and boundary and/or
interface conditions. Consequently to evaluate shape design
sensitivity, all integrals are evaluated as boundary integrals using
information obtained from finite element analysis along external
boundaries and internal interfaces between components. The boundary
approach fails to yield acceptable results for problems with
singularities due to unsatisfactory accuracy of boundary information
evaluated with the finite element method. The basic character of the
finite element method, which gives more accurate domain information than
boundary information, is utilized for shape design sensitivity
improvement. To do so, a domain approach for shape design sensitivity
anaiysis of built-up structures is derived using the material derivative
idea of structural mechanics and the adjoint variable method of design
sensitivity analysis. Velocity elements and B-spline curves are

introduced to alleviate difficulties in generating domain velocity

ii




fields. Regularity requirements of the design velocity field are
studied. Results obtained are applied to the following examples:
(1) Shape design sensitivity analysis of square>box and
plate-beam-truss built-up structures.
(2) Shape design sensitivity analysis, using a boundarj-
layer approach, of a simple interface problem and a
fillet problem.
Accuracy of shape design sensitivity is shown to be greatly improved
using domain information, avoiding data evaluation on external

boundaries and internal interfacese.
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I. INTRODUCTION

1.1 Motivation

The theory of structural shape design sensitivity analysis (SDSA)
has been extensively developed. Shape design sensitivity formulae have
been explicitly expressed as contour integrals, using integration by
parts and interface boundary conditions to obtain identities for
transformation of domain integrals to contour integrals. In this
boundary approach, one uses informatién.evaluated along external
boundaries and internal interfaces. This approach has been widely
tested in conjunction with the finite element method and it has been
found to have difficulties in problems with singular behavior.

The finite element method (FEM) is a powerful tool for solving many
analysis problems encountered in the practice of engineering
desciplines. However, it is widely known [1] that the accuracy of the
boundary information obtained with the finite element method may not be
satisfactory for systems with singular characteristics.

'If one recalls the nature of the finite element method as a domain
approximation method, it is easy to find the reason for conditional
accuracy of the boundary approach, when implemented with the finite
element method. During the computational process of the finite element
analysis, the unknown variables are sought to approximately satisfy the
governing equation and the non-kinematic boundary conditions in a domain

integral sense.



In the present work, a domain approach to shape design sensitivity
analysis is introduced to enhance the accuracy of the shape design
sensitivity, by taking advantage of inherent properties of the finite
element method. Also, to control the design velocity field within the
domain and to save computing time, a boundary-layer approach is

introduced and tested.

1.2 Organization

The first two sections of Chapter 2 contain a derivation of the
shape design sensitivity formulas, based on the domain approach for
built-up structures, using the material derivative idea from continuum
mechanics and the adjoint variable method. Built-up structures involve
components such as trusses, beams, plane elastic plates, and bending
plate components. The last two sections of Chapter 2 present the ideas
of boundary-layers and velocity elements. A boundary-layer is a
neighborhood of the varied boundary that is isolated from the core of
the structure by two bounding surfaces T and y. The outer bounding
surface I' is identical to the structural boundary and the inner bounding
surface vy is a pre-set surface chosen by the designer. The principal
objective of introducing a boundary-layer is to alleviate the difficulty
of generating domain velocity fields. Also, the idea of a boundary-
layer can reduce computing cost. A velocity element is a part of the
boundary-layer, with two opposite element sides that 1ie on two bounding
surfaces. Using an isoparametric mapping, a velocity element can

interpolate the design velocity of interior points, based on a given




velocity field along the two bounding surfaces. The bounding surfaces
-are represented using B-spline curves.

In Chapter 3, regularity properties of the velocity field are
studied through a simple example of a uniformly loaded cantilever beam,
by introducing internal subdivisions and different design velocity
fields. Based on this study, regularity requirements for each design
component are drawn and directly applied to a plate-beam-truss built-up
structure in Chapter 4.

In Chapter 4, the domain approéch to shape design sensitivity
analysis of built-up structures is treated. The first example is a
square box that is composed of five plane elastic components. The
second example is a plate-beam-truss built-up structure with a Hermite
cubic design velocity field.

In Chapter 5, shape design sensitivity analysis of structures is
presented using the boundary-layer idea. The first example is a simple
interface problem. In this problem, singularity can be expected along
the interface, due to non-smooth data (material property) across the
interface. The capability of this approach is demonstrated by comparing
numerical results obtained with the boundary and the domain
approaches. The second example studied is a fillet problem. The varied
boundary is represented by B-spline curves and the domain velocity field
is evaluated using a velocity element idea.

Chapter 6 presents discussion, conclusions, and suggestions for

futher research on the domain and boundary-layer approaches.



1.3 Literature Review

The desire to yield maximum performance with a minimum exenditure
of resources motivates the continuing developement and growth of
structural otimization. In the following, literature is reviewed in the
area of shape design sensitivity analysis and optimization, with
emphasis on numerical methods.

One of the first treatments of the general problem of optimizing
the shape of structures was presented by Zienkiewicz and Campbell [2].
They formulated the shape optimal design problem using a finite element
model of the structure and treated the location of nodal points of the
finite element model as design variables. They then calculated
derivatives of stiffness and load matrices with respect to design
parameters, obtained derivatives of structural response measures, and
employed sequential linear programming for numerical optimization.
Ramakrishnan and Francavilla [3] employed a similar finite element
formulation, but they used a a penalty function method for numerical
optimization. Francavilla, Ramakrishnan, and Zienkiewicz [4] employed
the finite element method of Refs. 2 and 3 for fillet optimization to
minimize stress concentration. Schnack [5] and Oda [6] used a finite
element formulation for stress calculation in the neighborhood of a
stress concentration and iteratively modified the contour to minimize
peak stress.

A more basic approach for surface contouring to minimize stress
concentration was presented by Tvergaard, for selecting the optimum

shape of a fillet [7]. He employed a stress field model of a fillet,




with a finite dimensional family of boundary shapes defined in terms of
coordinate parameters. -He employed a variational analysis of the stress
field to obtain derivatives of stress with respect to design parameters
and used sequential linear programming to iteratively construct an
optimum design. Kristensen and Madsen [8] formulated a class of shape
optimal design problems for planar solids that generalize the approach
presented by Tvergaard [7]. They used orthogonal polynomials to locate
the boundary of the bedy and treated the coefficients as design
parameters. They employed a finite element model of structural response
to obtain derivatives of stress with respect to design parameters [9]
and employed sequential linear programming to solve the optimization
problem. They solved an elementary problem of shape optimization of a
hole in a bi-axial stress field, analytically and numerically. They
also illustrated the method on more complex problems.

Bhavikatti and Ramakrishnan [10] presented a refinement of the
formulation of Refs. 2, 3, and 4 for optimum design of fillets in flat
and round tension bars. They also used a polynomial, with coefficients
taken as the design variables, to characterize the shape of the fillet
and a finite element model to calculate stress within the body. They
investigated minimization of stress concentration factor, minimum volume
design, and design for uniform stress distribution along the fillet
boundary. Derivatives of response measures with respect to design
parameters were calculated with a finite element model. Sequential
linear programming was employed for numer%cal optimization. Dems and

Mroz [11] presented a quite general approach to shape optimal design.



They used a boundary perturbation analysis to derive optimality criteria
and a finite element numerical method to determing the optimum

boundary. Dems [12] used this method to formulate and numerically solve
a variety of problems of shaft cross-section shape optimization for
torsional stiffness.

A function space gradient projection method for optimal design of
the shape of two-dimensional elastic bodies was presented by Chun and
Haug [13], using design sensitivity analysis methods similar to those
presented by Rousselet and Haug [14] and a gradient projection method
presented in Ref. 15. The design objective in this work was weight
minimization, with constraints on von Mises yield stress and shear
stress distribution on the boundary. The above method has been
extensively expanded, both theoretically and numerically. Yoo, Haug,
and Choi [16] applied the method to several plane elasticity problems of
considerable size, such as a dam and a connecting rod, by using sparce
matrix techniques [17]. Hou and Benedict [18] applied this method to a
torsion problem with shape constraints. Choi and Haug [19] developed
shape design sensitivity formulas for five prototype problems of elastic
structures. Choi [20] studied shape design sensitivity analysis of
displacement and stress constraint functionals, with emphasis on the
effect of point and element movement within the domain due to domain
perturbation. Haug, Choi and Komkov [21] have developed a unified
variational form of structural design sensitivity analysis with a
rigorous mathematical foundation. Lee, Choi, and Haug [22] applied the

method to build-up structures with constraints on design variables, von




Mises yield stress, displacement, and natural frequency. Yang and Choi
[23] improved the accuracy of shape design sensitivity for stress
constraints by improving boundary information, using higher order finite
elements with more‘sophistcated function evaluation schemes and smooth
boundary representations. The majority of the work in Refs. 17-22 uses

the boundary approach of shape design sensitivity analysis.



II. SHAPE DESIGN SENSITIVITY ANALYSIS
USING DOMAIN INFORMATION

2.1 Introduction

Shape design sensitivity analysis has generally been done by
transforming domain integrals to contour integrals, by integrating by
parts and using formal operator equations [19]. This approach, called
the boundary apprbach, has the following features:

(1) It is general and can be applied to a wide variety of problems
with regular functions.

(2) The dimension of the boundary, over which integration is
performed, is lower by one than the original problem.

(3) The variation of the functional can be obtained by evaluating
only normal components of the velocity field on the boundary.

(4) This approach requires accurate data along the boundary, which
is difficult to obtain using the finite element method (FEM).

In a majority of the problems tested to date, the boundary approach
has given resonable results. However, in (i) problems with irregular
functions or (ii) problems with strong singular characteristics, such as
build-up structures, the boundary approach may fail to yield acceptable
results [22]. |

In the boundary integral formulation of SDSA, difficulties may

arise because of poor accuracy of boundary information, which is




obtained by projecting results of FEM analysis from Gauss points of
elements in the interior to the boundary, may not be satisfactory. This
is caused mainly by the limited order of po]ynomiais used in the finite
element [24] and by skin effects [25]. Skin designates discrepancies
between the true and approximate boundaries. This behavior is shown to
exist near each beam stiffener in the plate-beam-truss built-up
structure of Ref. 22.

Considering the intrinsic nature of the FEM as a domain
approximation method, one may expect FEM to produce better domain
information rather than boundary information. In Section 2.2.1, the
domain approach of component shape design ;;nsitivity analysis is
derived, after introducing the basic material derivative idea.
Components treated are a truss, a beam, a plane elastic plate, and a
bending plate. Combinations of these components make up an extensive
class of built-up structures. In Section 2.2.2, the domain approach to
shape design sensitivity analysis is derived for a built-up structure,
using the adjoint variable method. In Section 2.3, the concept of a
boundary-layer and a boundary-layer coordinate system is introduced to
ease the difficulty of generating a domain velocity field. The
boundary-layer is a subdomain, located in a neighborhood of the varied
boundary. The boundary-layer is divided into a set of velocity elements
that can evaluate the velocity and derivative of velocity of any inside
points, using isoparametric mapping. In Section 2.4, the B-spline is

introduced to represent an arbitrary smooth boundary.
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2.2 Domain Approach to SDSA
2.2.1 Material Derivative of Bilinear
Forms of Each Structural Component
in One- and Two-Dimensions

A wide range of engineering structures are composed of one- and
two-dimensional structural domponents. Such structures maintain
integrity through interactions of components along interfaces. The
response of structural systems; more specifically, the displacement
field in the system, can be characterized by two contributions. The
first is contributions from stretching action due to lateral loads. The
second is contributions from bending action due to transverse loads.

For a given stimulus, these two actions determine the displacement field
of the system.

For one dimensional structural components, trusses and beams
represent stretching and bending contributions, respectively. For two
dimensional structural components, plane elastic plates and bending
plates represent stretching and bending contributions, respectively.
Mechanical structural systems are collections of a variety of structural
components. Combinations of truss, beam, plane elastic plate, and
bending plate components make up a large class of engineering
structures. Such engineering structures can be considered as being
built-up of structural components.

In this section, the material derivative is defined and basic
material derivative formulas for one and two dimensional functionals are
derived. The material derivative formula of each prototype structural

component is derived using basic material derivative formulas [19].
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2.2.1.1 Material Derivative. The idea of shape variation and

material derivative, presented in Ref. 19 are covered briefly here for
convenience and completness. Interested readers may find a more
detailed mathematical development in Ref. 19. -In shape deéign
sensitivity analysis, -shape of a domain is treated as the design
variable. It is convenient to think of the domain as a continuous
medium and to utilize the material derivative idea to relate a variation
in shape to the resulting variation in performance functionals.

Consider a domain Q in one, two, or three dimensions, shown
schematically in Fig. 2.2.1. Suppose that only one parameter t defines
the transformation T, as shown in Fig. 2.2.1. Thisvparameter can be
thought as time [19], so that the process of deforming Q to Q_ can be
viewed as a dynamic process of deforming a continuum, with the
parameter t playing the role of time. The trajectory of a particle that

is initially at x is now defined as the initial-value problem

it = V(x_,7)
(2.2.1)
Xq = X
In other words, one can define T by
T(x,7) = x (x) (2.2.2)

where X is the solution of the initial value problem, if the velocity

field V(xr,r) is given.
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Figure 2.2.1 Domain Variation

Suppose zt(xt) is a smooth classical solution of the following

formal operator equation on the deformed domain Q_:

K =f, x Q
(2.2.3)

N
]
o
-
x
lor ]

The pointwise material derivative, if it exits, at x € Q is defined as

oz (x + 1V(x)) - z(x)
Hx) = G 2(x + V(x))| g = p

(2.2.4)

Consider now a domain functional, defined as an integral over Qs
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¢ = ffn f.(x ) da_

=[] f(x + W(x))]J] da - (2.2.5)
Q

where ft is a regular function defined on a and J is the Jacobian

matrix of the mapping T. The material derivative of 2 at @ is [21]

d
¢i = H;-f{g ft(x + wV{x)}|g] da

Q .
If the integral over @ is transformed to a boundary integral, using

integration by parts, Eq. (2.2.6.a) can be rewritten as [19]
8 = Jf £'(x) dx + [ f(Ven) dr | (2.2.6.b)
Q r .

It is important to note that the entire domain velocity V appears
in the domain approach of Eq. 2.2.6.a in contrast to only the normal
component of the boundary velocity (V°n) in the boundary approach of Eq.
2.2.6.b. These two approaches, Eqs. 2.2.6.a and 2.2.6.b, are
mathematically identical. However, the values to be evaluated may be
significantly different, depending on numerical approximatfng methods
used in the calculation. The boundary approach should be used with a
boundary oriented approximation method, such as the boundary element
method, and the domain approach matches better with a domain

approximation method, such as the finite element method.



14

In shape design sensitivity analysis of built-up structures, a
shape change in a structural component causes movement throughout the
entire domain. To predict the effect of a change fn shape, one must
define the material derivative of a general functional that is given as
a one or two dimensional integral. The material derivative of a two
dimensional integral is given in Eq. 2.2.6.a and the material derivative
of a one dimensional integral is presented below.

Consider a functional that is given as a one dimensional integral

by = g dx (2.2.7)
X

where g is a regular function and x is a local coordinate system. The

material derivative of 2 is from Eq. 2.2.6.a,

oy = [ [a" + gV +aV] dx (2.2.8)
X

with g = g' + g,V

2.2.1.2 Truss Component. Consider a truss component with end

loads o and rL shown in Fig. 2.2.2. Note that the end loads rg and r|
are generally functions of a shape parameter b which is generally a
function of orientation in space, with respect to some coordinate
system. The energy bilinear form a(l)(z(l), 3(1)) for a truss component

is
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: E.A : (1)

—— e 7

Figure 2.2.2 Truss Component

L
DM, 71y oy aez{) 7(1 g (2.2.9)
0

where A is the cross sectional area of a truss member and the load

linear form is

Ly - o) Efﬁ; - ro(b) Efé; (2.2.10)

where the directions of end loads are as in Fig. 2.2.2.
The material derivative of Egs. 2.2.9 and 2.2.10 are

L '
[a(l)(z(l), ;(1))]n = g AE[(zil) ;ﬁl) + z( ) (1) ) + (z 1) Eil))x v

+ (@D 2y v ] ax

L
- | ae(z{1) 2y ax

L

-/ ae(z{) 7y v ax (2.2.11)
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and

dr,(b)
D@ - 5 2(8 - — z(é; (2.2.12)
where the fact that
#AD 7D, ?)((1) V=0 (2.2.13)

has been used.

2.2.1.3 Beam Component. A typical beam with distributed load q(x)

and end moment M is shown in Fig. 2.2.3.

,(2) q(x)

\ E,I;G,J /

L

Figure 2.2.3 Beam Component

The energy bilinear form a(z)(z(z),'f(z)] and load linear form

1(2)[2(2)) are, respectively,
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L
a(2) (z(2) | 3(2)y -f er (z{2) 72y ax + [ a (0,8,) dx (2.2.14)

XX 0

3 |
2272y - fo q ?(2) dx + M[B(L) - 8(0)] (2.2.15)

where the bilinear form a(z)(z(z), 3(2)) includes both bending and
twisting actions, E is Young's modulus, G is shear modulus, I and J are
moment of inertia and polar moment of inertia of the beam, respectively,
and ¢ is beam rotation.

The material derivatives of Eqs. 2.2.14 and 2.2.15 are

a2 (2(2), =2y - j ex(z(2) 7{2)) o +f 6J(8,3,) dx

L
-1 1[3((? TP+ (22 T 22 3Dy ] g
.— L
- Io GJ(8,8 )V, dx (2.2.16)
L
(@) =1 g ?(Z)Vx dx (2.2.17)
0

2.2.1.4 Plane Elasticity Plate Component. In Fig. 2.2.4, a plane

elastic plate with traction T(x) and body force F(x) is given. Note
that x is used to designate (xl, x2). The energy bilinear form and load

linear form are, respectively,

a(3)(z(3), 7(3)) ={[ 3 ij(Z(s))eij(Z(3)) da (2.2.18)
Q1,j



_ T 18
T = [T] ,T2]

L.

Figure 2.2.4 Plane Elastic Plate Component
BENy ey F TN dae s 1T ar (2.2.19)
1} r

Taking variation of Eqs. 2.2.18 and 2.2.19 and the using material

derivative idea, one has

R 2 - g e (e @) aa
Q1,j

RO N R
g 1, J

)dsz

-0 1 {Zc,m(vz,ﬁ” -%—)} e; @) aa

Q i,

LT o) e @ 7w

@ 1, (2.2.20)
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AN = g1 - (FHD vy () )
Qi

+ R v e a3 ) ar (2.2.21)
. ri
where C is the elastic modulus tensor, which satisfies Cijkz = ckzij and
cijkz = Cijzk’ i,jsk,1=1,2.

2.2.1.5 Plate Component. Consider a plate of variable thickness

h(xl, x2)>h>0 with load f(xl, xz) shown in Fig. 2.2.5. The energy

bilinear form and the load linear form are, respectively,

Figure 2.2.5 Bending Plate Component
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aM (4, 74y . ff D[(z(4) suz{dy S (Zgg) + vz{4)y Z(4)

22 ) 211 1) %22
+ 2(1-v) 283 Z{3)] da | (2.2.22)
and
f{HNEH) = I (s 74y 4a (2.2.23)
where
o 12(§?i2)

Taking the material derivative of Eqs. 2.2.22 and 2.2.23, one has

O R (G IR C R L

+ 2(1-v):{3) 727 da
- 1o P evy) e v pf)

+ {(VZ(4)'V)22 + “(VZ(4)°V)11}7§2) + 2(1-\’)(”(4)"’)12] dq

- fan[(_zﬁ) s vzS (7 vy v (@2 - va{th (),

+ 2(1-v)z{}) (v2(4)-v)12] dg (2.2.24)




4) . (8)\—(4 4
(2 §1i+v2§2%I'( )+(Z1z% Zg %)—éz)+2(1‘“) §§%‘§3’ vt
+[[D . . da
| RO el D 1) |12

(z (4)+vz(4)I'(4)+(z ) puz{ )) (4)+2(1-v)z(4)-(4) vl

7113 1102122 12 2112
‘1D dq
o [ N B ) O RN O O T

D 2 1- .
+ [f l(z vz, ) +(z +vzyg )22 +2( v)z12 12 (VeV) dg

and

@M = 11 (7)) (vev) da (2.2.25)
Q
where v = [V}, v

2.2.2 Variational Equation for Built-up Structure

The material covered in this sub-section is originated in Ref. 21,
which is briefly reviewed here for completeness. As stated previously,
a general structure is a collection of structural components that are
interconnected by kinematic constraints at their boundaries.
Displacement fields in structural components are said to be kinematically
admissible if they satisfy kinematic constraints at the interfaces. In
Can abstract setting, let z denote a composite vector of displacement

fields in the components that make up the built-up structure as
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z= [z(l), 2(2)’ coes z(r)]T . (2.2.26)

where 2(1) € [Hm'i(fzi)]ﬁi represent displacements for the (i)-th
component, and r is the number of components that make up the built-up
structure. The space of kinematically admissible displacement fields is
defined as the set of displacement fields satisfying homogeneous
boundary conditions between individual components and the ground
reference frame and kinematic interface conditions between components.

Symbolically, this is

Z={z€EW: yz=0onT, vz = viz on rish (2.2.27)

where the product space W = 1_r[Hm'i(sz1.)]’.i is the space of displacement
fields that satisfy the requ}red degree of smothness, y is a boundary
operator [21] that gives the projection of structural displacements and
perhaps their derivatives onto the exterior boundary T and yi and Yj are
interface operators that project displacement fields and perhaps their
derivatives from within components i and j onto their common

boundary rij’

2.2.2.1 Hamilton's Principle Let the strain energy of the

structural system be denoted by

= 1120, 20y (2.2.28)
1
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where-% a(i)(z(i), E(i)) is the strain energy of (i)-th component.

It is presumed that the quadratic strain energy in Eq. 2.2.28 is
defined for any displacement in the kinematically admissible
displacement field Z. The strain energy U is defined as the sum of
strain energies of the components that make up the built-up structure.

Next, define the kinetic energy of the system as

dz dz dz
TG =7 EH)

(2.2.29)

b gl )

where-% d(i)(dz(i)/dt, dz(i)/dt) is the kinetic energy of (i)-th
componént where dz(i)/dt denotes the time derivative of displacement
z{1), As in the case of strain energy, kinetic energy is obtained by
summing kinetic energies of each component in the built-up structure.
It is also presumed that the kinetic energy T in Eq. 2.2.29 is defined
for all kinematically admissible displacement fields.

Finally, let the virtual work of externally applied forces be
defined as

T(z) = 2(2)
7 @)y (2.2.30)
i

where ] f'(1)] is the virtual work of the (i)-th component, with
virtual displacements that satisfy the kinematic boundary conditions;

i.e., z €1.
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The variational form of Hamilton's principle[21] requires that

t2 tz _

[ U-TMdt=f Tdt ' (2.2.31)
t t

for all times t; and tp and for any kinematically admissible virtual

displacements z that satisfy the additional conditions
EKtl) = Eth) =0 (2.2.32)

where U and T are the first variation of the strain and kinematic energy

quadratic forms defined as, respectively,

U=a%U(z+ 1Z)

=0 = a(z, 2)
w d redz dz . . dz  dZ
T-= a—; T(Ft— + T -a-f') =0 - d(ﬁ ’ -&-E-) (2.2.33)

One may rewrite Eq. 2.2.31 using Eq. 2.2.33 as

t, _ t,
ft la(z, 7) - 4G, $)] dt = ft 2(3) dt (2.2.34)
1 - 1

2.2.2.2 The Principle of virtual Work. Consider the case of static

response of a structure to load that does not depend on time. One can

obtain the variational form of the governing equation for

LRR

2 hirdil+_un
L~ MUl e UP

structure by suppressing time in Eq. 2.2.34 as

a(z, 27) = £(2), for all Z€ 7 (2.2.35)
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Note that the energy bilinear form on the left is the summation of
bilinear forms of structural components and that the load linear form on
the right is the summation of load linear forms of each component making

up the built-up structure.

2.2.2.3 First Variation of the Variational Form of the Built-up

Structure. The objective is to find a relationship between a shape
variation and the resulting variation in the state of the structure.
One can define the first variation of Eq. 2.2.35 using Eqs. 2.2.28 and
2.2.30 as

la(z, 2)]' = a(2, 2) +a'(z, 2)

- 7 A gy, 7 00 )
i=1

i=1

[2(2)]' = ' (2)
- 7 gl (2.2.36)
i=1

where a'(z, z) is the differential of the energy bilinear form with
respect to design.

Using material derivatives fo'component energy bilinear forms and
load linear forms in Egs. 2.2.11, 2.2.12, 2.2.16, 2.2.17, 2.2.20,
2.2.21, 2.2.24, and 2.2.25, one obtains from Eqs. 2.2.35 and 2.2.36
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f+ V3

"~

Ne

-

N
1}

] ‘El (D)) 31)y
i=

E1 z(i).(iﬁ)) B 151 a(i).(z(i)’ 7“))

i=

2'(Z) - a'(z, 7) ©(2.2.37)

2.2.3 Adjoint Variable Method
Consider a general functional that defines performance of a built-

up structure as [21]

o= T 1 o, w1y 4 (2.2.38)
i=1 q,

where 2{1) is the displacement field of the (i)-th component and
i) _ i i
Vz( ) - [Vzg ), vZé )].
Taking the variation of the above functional, using the

material derivative idea, one has

v _ . d
“p a? wgr(zr) Fo
) U, f )
= 1-21 “’ﬂ (gz(i)z + '21 9 (1) VZJ. ) da
= i J‘ sz
. i (1) . (i)
- v Y]
) iZI ffni { gz(i)( : )
g . . ,
121 992§i) v(vZ§‘) - v} g

<+

(%' - vi)+ g (v V) da (2.2.39)
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where z(i) = [zgi), z%i), coey zgi)]T. In order to take advantage of
this result, one must write terms1of Eq. 2.2.39 explicit]y in terms of
the velocity field V. Since z cannot generally be determined
explicitly, one must resort to a technique such as the adjoint variable
method to obtain the desired result.

In order to treat terms on the right of Eq. 2.2.39, one can define
an adjoint equation by replacing z in Eq. 2.2.39 by a virtual

displacement A and equate the resuit to the energy bilinear form,

evaluated at the adjoint variable, as

2.
A = 3 (@ XD g g wii)) de (2.2.40)
i=1 g 2! j51 sz(.‘) i

for all X € Z, where A = [x(l), X(Z)’ cees x(r)]T. Presumming the
energy bilinear form is strongly elliptic and that terms on the right of
Eq. 2.2.39 is a continuous linear form in X, this equation can-determine
A uniquely [21]. Since z satisfies the kinematic édmissibi]ity
conditions, one may evaluate Eq. 2.2.40 at X = z and Eq. 2.2.37 at

Z = A, to obtain

-
]

= z'(x)_- a'(z, 1)

L.
r i (1) L i)y - ¢ (1) . (i)
+ Zl I {-gz(i)(vz vt jzl gvz§i)v(vzj Vi) da

v T (st vy v - vy g (2.2.41)
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where v(1) s the velocity field defined on ;.

Note that evaluation of this explicit design sensitivity formula
requires solution of Eq. 2.2.40 for adjoint variaﬁ]e A and evaluation of
functionals involving both the state variable and the adjoint variable
A. These‘calculations are direct and take full advantage of the finite
element method for solving both the state and adjoint equations of the

built-up structures.

2.2.4 Material Derivative of a Functional

Defied as a Local Measure,

Using the Domain Approach

Some measures of behavior of state, such as displacement and
stresé, are not global. They are defined as local measures af an
isolated point ; or over a small test region oPc a. With this
situation, unlike functionals that define global measures, shape design
sensitivity of local functionals may have additiona] contributions due
to movement of point ; or sub-region Qp, called "element velocity |
terms". This is the case when sub-regions are chosen to be finite
elements. If one perturbs the shape of domain @, all points in the
domain have non-zero velocity. An isolated point ; moves to
;T = ; + rV(;), due to the domain perturbation. Likewise, a small test
region @ will move to occupy P after perturbation. One must consider

contributions from this movement in calculating shape design sensi-

tivity. The idea is given graphically in Fig. 2.2.6 for beam component.
Shape design sensitivity of local functionals was treated in Ref.
20 using a boundary approach. Here, it is treated using the domain

approach of SDSA.
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Figure 2.2.6 Element Velocity

Consider a functional defined over a small test region c aas

v=[[ M da
Q p

(2.2.42)

where f is a regular function and Mp is a characteristic function that

has constant value M_ on QP and zero on n\np. The value of ﬁb is

P

W, = _r
(an da)

(2.2.43)
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Using Eq. 2.2.43, Eq. 2.2.42 can be re-written as

U/
V=

npf,ds)

I e (2.2.44)
P

One can take the material derivative of Eq. 2.2.42.b to obtain
(I J[F +(vfev)+(v-V)] da) ([ _da)-(ff f da)(f]  (v-V) da)
aP P g af
(J pda)?
Q

<
19

[/ [f'+(Vf-V)+f(V-V)]Mp da - (jfnprp de) (ffnp(VoV)Mp de)

(2.2.45)

P

Note fhat the first integral is the same as Eq. 2.2.4.a, which is the
shape design sensitivity formula for a global functional. Also note
that one needs to add the second integral, the element velocity term,
for shape design sensitivity of a local functional.

It is important to note that the element velocity term does not
necessarily vanish for zero boundary velocity. The element velocity
term is non-zero as long as the domain velocity does not vanish, inspite

of zero velocity along the boundary.

2.3 Boundary-Layer

The boundary of the domain (or a part of the domain) is

parametrized by a set of shape parameters and a boundary representation

function. The velocity of the boundary can be defined in terms of its

parametrization. Once the velocity of the boundary is given, one can
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evaluate velocity and its derivative using a mapping called a velocity
element. In this section, the concepts of "“boundary-layer" and
"velocity element" are treated. In the next section, B-spline functions

for boundary representation are discussed.

2.3.1 The Boundary-Layer Coordinate System

For shape design sensitivity analysis (SDSA), “mathematical shape
modelling" and "velocity field contouring" are interdependent. The
shape model and the velocity field must satisfy regularity requirements
that are dictated by the problem. |

Mathematically speaking, let the domain @ be a ck regular open set,
with Ck denoting the collection of k-times continuously differentiable
functions; i.e., its boundary T is a compact manifold of class ¢k in RM
(n = 2, 3). That is, the boundary is closed and bounded in R" and can
be locally represented by a Ck function. Let the velocity field
V(x) R" be a vector field defined on a neighborhood U of the
closure @ of @ and let V(x) and its derivative up to order k > 1 be
continuous. With this hypothesis, it has been shown that the mapping T
in Eq. 2.2.1 is a homeomorphism from U to UT z T(U,t), for small t [21].

The boundéry of a structure can be modelled using any approximating
method [26]. For general shapes, assigning design parameters and
defining a compatible velocity field are sometimes awkward or
extraodinarily complicated. The simplest and most natural geometric
construction is generation of a shape “design" boundary-layer, specified

by two bounding surfaces T and y as shown in Fig. 2.3.1.
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Quter Bounding Surface, T

Boundary-layer

Inner Bounding Shrface,y

Inner Core

Figure 2.3.1 Shape Design Boundary-layer
with Two Defining Surfaces

The inner bounding surface y isolates the boundary-layer from the
inner core of the structure and the outer bounding surface T coincides
with the structural boundary. A boundary-layer coordinate system, that
is orthogonal to the inner bounding surface y can be established, as
shown in Fig. 2.3.2. This coordinate system is particularly useful for
shape design sensitivity analysis, due to its "local ofthogonality".
Local orthogonality menas that the coordinate system is orthogonal only
on the pre-set inner bounding surface, but not necessarily elsewhere.

The basic shape of the inner bounding surface should preferably be
close to that of the structural boundary. However, too much concavity
must be avoided, since the boundary-layer coordinate lines would have
intersections among themselves as shown in Fig. 2.3.3. Practically, the

inner bounding surface should be defined by a simple analytical function




and close to the shape of the structural boundary. Computation can be

greatly simplified by using a simple analytical function.

Boundary-layer Coordinate

Boundary-layer

Figure 2.3.2 Shape Design Boundary-layer Coordinate System

Coordinate Lines

r

Inner Core

I

Figure 2.3.3 Intersections of Boundary-layer Coordinate Lines

33
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Shape design variables b can be distances between the two bounding
surfaces, measured along the boundary-layer coordinate system, as shown

in Fig. 2.3.4. Note that n is the outward unit normal to y.

t

Inner Core

Figure 2.3.4 Definition of Design Variable b

The boundary-layer coordinate system for a two dimensional domain
can be formulated mathematically as follows: The equation of a pre-set

inner bounding surface y is given in the form
¥(s,t) = 0 | (2.3.1)

where s and t are Cartesian coordinates referred to some origin. Points
on the inner boundary surface y are specified by a vector r from the
origin of the coordinate system to the point R on y as shown in

Fig. 2.3.4 In this figure, n and t are outward unit normal and unit
tanget to v, respectively. The outer bounding surface T can be

determined by a set of points S that are specified by a vector r,
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~

r=r+b(s, t)n (2.3.2)

where b(s,t) is a design variable at (s, t) on y.~

2.3.2 The Velocity Element

As mentioned previously, the domain approach requires velocity and
its derivative throughout the domain. For a general shape, velocity and
its derivative can be effectively evaluated using shape design velocity
elements located within the boundary-layer, as shown in Fig. 2.3.5.

The essential idea underlying development of velocity elements
centers on isoparametric mappings [27], based on the Serendipity family

: f ‘
[28] of rectangular elements Velocity Element

Figure 2.3.5 Boundary-layer with Set of Velocity Elements

The serendipity family of elements contain only exterior nodes, as

shown in Fig. 2.3.6.



36

(a) , (b) (c)

Figure 2.3.6 Some of the Serendipity Family Elements
(a) Linear, (b) Quadratic, (c) Cubic

An isoparametric mapping means that the functional representation
of the field variable and the functional representation of the geometry
are expressed by shape functions of the same or&er as in Egs. 2.3.5 and
2.3.6.

The outer bounding surface I can be parametrized by a vector b that
locates points on the surface I'. In terms of the parametrization of the

boundary T, the velocity of the boundary T is defined as

= d . or

where & is a deéign variation, t is a time-like parameter, and
V = [VS, Vt]T. The velocity along the inner bounding surface vy is

defined to be

V=20 | (2.3.4)
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since y is not allowed to move.

A velocity element, shown in Fig. 2.3.7, intgrpolates velocity
inside the element, based on specified velocity along y and I, by Egs.
2.3.3 and 2.3.4. Opposite sides of a velocity element are the inner

bounding surface y and the outer bouding surface T, as in Fig. 2.3.7.

Figure 2.3.7 Velocity Element

As indicated in Fig. 2.3.7, the necessary velocity shape functions
should have cubic and linear variations in £- and n- directions,
respectly.

Note that, due to different orders of approximation along each
side, the shape functions for mid-side nodes and corner nodes can be

generated as follows:



(i) For mid-side shape functions (N;, N3, Ng, and N;), a simple
multiplication of cubic order and first order Lagrangian
interpolation suffices.

(ii) For corner shape functions (Ny, Ng» Ng, and Ng), a combination of
bilinear corner functions, together with an appropriate fraction of
mid-side shapes to ensure zero at appropriate nodes, is required.

The velocity shape functions for cubic/linear variation are listed in

Table 2.3.1.

Table 2.3.1 Velocity Element Shape Function

N; Shape Functions

N, 9(1 - 3 £)(1 - n)(1 - £2)/32

Ns 9(1 + 3 &)(1 - m)(1 - £7)/32

Ng 9(1 + 3 E)(1 + n)(1 - £2)/32

N, 9(1 - 3 £)(1 + n)(1 - £2)/32

N (1 - €)(1 - n)/4 - 2 Np/3 - Ng/3
Ny (1 +E)(1 = n)/4 - Np/3 = 2 No/3
Ng (1+E)(L + n)/4 - 2 Ng/3 = Ny/3
Ng (1 - &)(1 + n)/4 - Ng/3 - 2 Ny/3

Using an isoparametric mapping, the value of field variables and

position within an element may be expressed as

[(1=Ng (2.3.5)
VS
[ t] =NV _ (2.3.6)
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where

Nz[:nlo Ny 0 N, 0 Ny O +ecee N O
0 N, 0 N3 0 Ny «eeee 0 N

g = [51’ tl’ sz’ tz’ sesee, 58’ t8]

1<
]

W v Ve e e s L
T

and (s;, t;) and [V?, V?] are position and velocity of (i)-th nodes.

Note that shape functions N;, i =1, 2, *****, 8, are given in terms of

local coordinates & and n, which are dimensionless centroid coordinates

with -1 < &, n <1,

One cannot find derivatives of velocity with respect to s or/and t
directly from Eq. 2.3.6, since N contains & and n, instead of s and t.
This requires that the following coordinate transformation of
derivatives be invoked [29]: Let ¢ be either VS or Vt, which are

function of s and t. Then, the chain rule yields

b, 9,
[ S1=9(,°
—_— Sn ¢’t

] (2.3.7)

where J is the Jacobian matrix obtained using Eq. 2.3.5 as

S, t, .
.J_= [s,E t’E] (2-3.8)
n n

The inverse relation, from Eq. 2.3.7, is
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s R
[51= 97 0, % (2.3.9)
’t ’n
The derivative of velocity can be found by the above procedure.

2.4 Mathematical Shape Approximation

2.4.1 Introduction

Creating a mathematical shape model that will adequately represent
the domain is one of the fundamental problems of SDSA. For numerical
purposes, actual structures can only be represented through mathematical
shape modelling. The procedure of SDSA is dependent on shape model
creation in two ways. First, structural behavior is analyzed based on
the mbde] created. Second, SDSA is performed on the model, using
analysis results and shape informatioa such as intrinsic distance [30]
and area, etc. Intrinsic distance means distance measured along a
surface from point A to point B. In calculating design sensitivity,
numerical integrals require shape information along with the design
velocity field.

SDSA requires adoption of mathematical shape modelling that is
capable of representing geometry of a large class of structural
shapes. Linear and the Lagrangian families [31] are too primitive to
satisfy continuity and "fairness" requirements. Fairness is related to
the absence of unwanted shape deficiencies, particularly oscillations
[32]. Shape deficiency is used to designate discrepancy between
original shape and approximated shape. The Hermite and the Bezier

polynomials [33] have limitations due to continuity. The spline family
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can provide more flexibility and generality. Among the spline family,
polynomial splines and B-splines are the most widely used for shape
modelling.

A comparison between polynomial splines and B-splines is summarized
in Table 2.4.1. For shape optimization purposes, the'"local support"
and "variation dimishing" properties are advantages of B-spline
[34,35]. Local support means that the effect of perturbing a design
component is felt only locally. Consequently, the velocity fieid
associated with a design component is non-zero only locally. The
variation diminishing property means that the approximated surface is no
less fair than the original surface. The local support and variation
diminishing properties of B-spline curves are demonstrated in
Fig. 2.4.1. Note that Fig. 2.4.1.a demonstrates the variation
diminishing property of a B-spline curves by approximating straight
lines exactly. Figure 2.4.1.b shows the local property of B-spline
curves. Perturbing a single vertex A of the polygon produces only a.

local perturbation of the curve in the vicinity of that vertex.

=2

A

4 a

N )
(a) - (b)

Figure 2.4.1 Local Support and Variation Diminishing Property
of B-Spline Curve, (a) Before, (b) After Perturbation




Table 2.4.1 Comparison between Polynomial Spline and B-Spline

Type of Behavior Required Design
Spline Perturbation Modelling Data Set
Polynomial{ Global Interpolation| m positions| m position
Spline and 2 end and 2 end
slopes data
Local Approximation| Depends on | m position
B-spline Approx. of the
Method control
vertex set

If polynomial splines are applied to the above figure, every line

segment between nodes will be altered after perturbing a single

vertex. This is due to the global nature of the polynomial splines.

Polynomial splines and B-splines can assure the same order of

smoothness.

a surface represented by polynomial splines.

splines is apparent when one considers to approximate aero-dynamic body

However, a surface represented by B-splines is fairer than

The usefulness of B-

such as a vehicle body or an aircraft fuselage or wing surface.

One may conclude that B-splines are superior in representing'

surfaces. In the following subsection, B-splines are discussed in

detail.
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2.4.2 B-Spline

B-splines, the common abbreviated name for basis splines first
introduced by Schoenberg [36], are a c]aSs of piecewise continuous
parametric polynomials. The B-splines of order k are polynomials of
degree (k-1), which are continuously differentiable (k-2) times at the
joints.

As noted in Table 2.4.1, B-splines have approximating features
comparable to interpolating features of polynomial splines. An
interpolating spline means a spline that passes through its defining
points. On the other hand, an approximating spline is a spline curve
that may not pass through its defining points, as shown in Fig. 2.4.2.
The set of defining points is sometimes called the “control vertex

set". The B-spline basis element Ni k(t) can be defined in the
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interval ti<t<ti+k by means of the recursive formula of Cox and DeBoor
[37]:
For k =1,
1 for t. <t<t,
- i itk
Ni,l B {0 otherwise (2.4.1)
and for k > 1,
t -t. t. -t
= 1 i+k
Mok T - M) R M ™




a4

where t; is called the (i)-th knot. Refer to Ref. 37 for definition and
details about knots. Note that one should carefully distinguish knots
t; from joints Xjs which are physical junctions between two curve

sigments, as shown in Fig. 2.4.2.
f(x)

Defining polygon

XQ X1 X0 X3
Figure 2.4.2 An Approximating Spline

The recursive formula for Ni,k in Eq. 2.4.2 amounts to generating all

the entries of the following triangular table:

N ,1(t) Nj.1,2(t) "o N; _g+2,k-1(t) N e,k ()
Ni,2(t) e Ni _k+3,k-1(t) Ni _k+2,k(t)
N, k-1(t) Ni-1,k(t)

Ni,k(t)
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Actually, this process yields the complete set of periodic B-spline
basis functions of order k, which are cycle translates of a set of basis

functions, as shown in Fig. 2.4.3
Ni k

|

‘ t
Figure 2.4.3 Complete Sets of B-spline Basis Functions

For cubic B-splines, a set of basis functions are renamed as bj,
j=-1,0, 1, 2, to be used harmoniously as in Eq. 2.4.3. The

calculated basis functions bj are given in Egq. 2.4.2.

\
b_y = (u’)/6
2 .3
b0 = (1 4+ 3u+ 3u” - 3u")/6
b, = (4 - 6u2 + 3u3)/6
b, = (1-3u+ 3 - u)/6 (2.4.2)
J

where u is a parametrization of (x;, xj41) with O<u<l. In Fig. 2.4.4,
the shape of four B-spline basis functions are given. Here, x; is the
(i)-th joint.

A B-spline curve can be constructed in a piecewise manner, where

each piece is a curve segment. The entire curve is a mosaic of these
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0.0
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[} L

Figure 2.4.4 B-Spline Basis Functions

curve segments that are patched together with appropriate continuity at
the joints.

Curve setments are weighted averages of control vertices, using
the B-spline basis as weighting (or blending) functions. Consequently,
B-splines approximate the control vertices without passing through
them. Therefore, one must define a set of control vertices
v = [vo, Vis Vos °°° vm] to represent a given curve, as shown in
Fig. 2.4.4. A cubic B-spline curve segment is controlled by four
contro]lvertices and is not affected by the remaining control
vertices. A point on the (i)-th cubic B-spline curve segment is a
weighted average of the four adjacent vertices {Vi-l’ Vis Vigye v1+2},

as shown in Fig. 2.4.5.
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Q
V.
V. i+]
v 1 Vis2
i-1 — .
VO. .o Q'i (U) . Vm
X X: 4 X: X X X X
0 i-1 ™ i+l Ti+2 m

Figure 2.4.5 Pairs of Adjacent Point Forming (i)-th Segment

The mathematical formulation of the (i)-th segment is then [38]
Qi(u) = vigPoy * ViPo * VisiPy ¥ Visgde (2.4.3)

which is a local representation.

As a first step in using B-splines, one must provide a means of
obtaining a satisfactory initial approximation to the given starting
design, by creating an initial arrangement of control vertices. Once
this is done, it is natural to systematically modify the arrangement of
control vertices using an optimization technique. The problem is that
reduced to determining an appropriate set of B-spline control vertices
that will generate a surface, interpolating a specified set of points on

the boundary of the starting design.
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The one-to-one correspondence between B-spline curves and the
control vertex set [33] enables one to carry out the following
procedures:

Let 51, i=0,1, *** m, be boundary points lying on the initial
design and v4, 1 =0, 1, *** m, be control vertices. At the end of the

curve, one has
s
o S°} (2.4.4)

Using Eq. 2.4.3, one can obtain a system of equations with Vis j=1, 2,

*** (m-1), as unknowns. The resulting matrix equation is.

Ay=r (2.4.5)

where A is the tri-diagonal matrix

~
4 1 }
1 4 1
1 4 1
_A- = .o..o..o. (2.4.6)
1 4 1
! L4 (m-1)x(m-1)
-
.
!'S [vl’ v2, oeoe vm_l]
and
ry ) [&s1-ve ]
rg ng |
r=1| + |= : | (2.4.7)
-2 65 -2
r 6s
m-lJ m-1 -v _
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One can find a control vertex set y by solving Eq. 2.4.S.
A B-spline curve segment is the sum of four weighted bases

functions, as in Eq. 2.4.3. Thus, (m+l) control vertices vg, vy, *°° v,

can be used to define (m-2) segments, indexed as Ql(u),'qz(u)’ e, Q.

2(u). A B-spline curve does not, in general, begin or end at a control

vertex. To obtain better control of the endpoints, one may treat them
specially using the following basic features of B-splines.

Basic features of B-splines at the (i)-th joint are

(1) Q= (vy + dvyyy * ¥3,p)/6
(i1) dQ;/du = (-v. + v.+2]/2
(111) a®Qu/du® = (v; - 2vi,) * vy,) (2.4.8)

where Q; is Q; (u) evaluated at a joint i+l, vy, Vi+1» and vj.o are
adjacent control vertices, and u is a parametrization. One can
interpret Eq. 2.4.8 more geometrically as follows:
(1) The B-spline curve passes through a point p that is the 1/3 point of
the median of the triangle formed by 3 sequential vertices, as shown
in Fig. 2.4.6
(2) The first derivative vector at p, in/du, and the secnd derivative
vector at p, szi/duz, can be interpreted geometrically, as shown in
Fig. 2.4.6.
Using the above B-spline characteristics, one can make the B-spline
curve segment begin or terminate at a desired point. For convenience,
two of the techniques are summarized below. More details can be found

in Refs. 39 thru 43.
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~ “ V4

\\\/,
\,’ szi

du?
Figure 2.4.6 Geometric Interpretation of B-Spline Basic Features
(i) Triple vertex technique.

One can define two additional segments at the beginning of the

curve by

Q_1(u) = volb_q(u) + bg(u) + by(u)] + vibo(u)
Qo(U) = Vo[b_l(U) + bo(U)] + Vlbl(U) + Vzbz(U) (2-4.9)

The curve then begins at vo = Q_1(0). Similarly, one can define two

curve segments Qp_1(u) 4.4 Qn(u) to make the curve end at vg.
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(i1) Phantom vertex technique.

An alternative way of controlling the starting or ending point of a
curve is to define a phahtom vertex and a corresponding curve segment.
Let v_; be a phantom vertex for the initial segment and v,_; be a
phantom vertex for the terminal segment. Then, the initial curve

segment Qqg(u) can be defined as
Qo(u) = V-lb-l(u) + vob0 + Vlbl(u) + vzbz(u) (2.4.10)

In a similar way, terminal segment Qg _;{u) can be defined using {Vm-Z’

Vm-1> VYm> vm+1}'
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IITI. REGULARITY OF VELOCITY FIELDS

3.1 Introduction

When a perturbation is given to the boundary I, the velocity field
‘inside the domain @ is not unique. One has great freedom in selecting a
design velocity field inside the domain, consistent with smoothness
requirements. A sufficient condition for regularity of the velocity
field is given in Ref. 21. It is desirable to reduce these requirements
for certain class of problems, since a ve]&city field with lower order
regularity is easier to construct and manipulate. One example by Lee
and Choi [22] shows that too much relaxation (using a Co-velocity field
in an application in which a Cz-ve1ocity field is suggested by the
sufficient condition) can raise difficulty in shape design sensitivity
analysis. Therefore, it is helpful to know how much the regularity
requirement can be relaxed.

Analytical experiments are performed on a uniformly loaded uniform
cantilever beam by introducing domain sub-divisions and different
velocity fields, to evaluate regularity requireménts on the design
velocity field.

Data for this test are as follows: beam length is L, moment of
inertia of the beam cross-section is I, Young's modulus is E, and the
uniformly distrubuted load is f, as shown in Fig. 3.1.1. The space of

kinematically admissible displacements is
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z={z€H(0,L) : 2(0) = 2, (0) = 0}.
The design variable b is the length of the beam, where b; and bs

are the lengths of each sub-domain Q. Also, Gbl and 6b2 are design

variations of b1 and by, respectively.

£[1b/in]

= b - L
b]"?- b =2_.__._._.
b=1L
Q] Q
(a) Original Shape

(b.‘ +ab]) : (b2+sb2) —_—
(b+&b)

AOMNNNT NN

(b) Perturbed Shape

Figure 3.1.1 Beam Configuration
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3.2 Formulation
Consider a functional that defines the value of displacement at an

isolated point x €(0,L) as
L ~
b= [ Fx - x)zdx . ‘ (3.2.1)
0 R

where §(x) is the Dirac d-measure and x is a fixed point in the beam.

Using Eqs. 2.2.16 and 2.2.17 and neglecting torsion, one has [19]

L -
¥ = a(z,A) - [ J(x - x) (sz)dx (3.2.2)
0

-

where X is the solution of the adjoint equation
. L _ - _ _
a(x,Xx) = [ §(x - x) X dx, for all z €2 (3.2.3)
0

For comparison, one can obtain a shape design sensitivity formula
using the boundary approach, which is given in terms of the boundary

velocity field as [21]
¥ ® Lz A V] * | o, (3.2.4)

A shape design sensitivity formula can also be derived using the
domain approach, which is given in terms of the velocity field and its
derivative throughout the domain. Assume the domain is divided into two
regions with equal length. Then, the variational form of the governing

equation is
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a(z,z) = 2(2), for all Z €12 (3.2.5)

where

L
a(z,z) fOEI(z z..) dx

XX XX

L
2(z) = IO fZ dx

Taking the variation of Eq. 3.2.5 and using Eqs. 2.2.16 and 2.2.17,

one obtains

’ L
a(z,z) = fo EI(zxx ?xx) dx
L — — —
= IO [3EI(zxx zxx) V. + EI(zx Zow ¥ 20y zx)vxx) dx
L o, -—
+ [ (fZ)V, dx, for all 2 € Z (3.2.6)
0

Since X € Z is arbitrary, one may evaluate Eq. 3.2.3 at X = Zz to obtain

L .
a(r,2z) = [ §(x-x) Z dx (3.2.7)
0

Similarly, one may evaluate Eq. 3.2.6 at Z = A to obtain

AW+ EI(z, A, + 2z x )V T dx
xx “xx’'x X x “x’ Txx

L
a(i,}) = fO [3EI(z XX X

] |
RGN (3.2.8)
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Since the energy bilinear form a( ., .) is symmetric, Egs. 3.2.2, 3.2.7,
and 3.2.8 yield
- % [oEer(z Al s er(lal
v i=1 2, XX“xx 77X XXX

i
xx x)v Jax

L - .
* z f (fA! )v1 dx - [ §(x - x)(z,V') dx (3.2.9)
i=1 0

8
as the sum of integrals over two subdomains, since derivatives of design

velocity field may be discontinuous at x = L/2.

3.3 Analytic Test

Based on the simple beam theory, the displacement field due to

uniformly distributed load can be expressed, as
2(x) = ﬂ-ﬁ- (x2-ax +6L%) 0<xc<lL (3.2.10)

The adjoint displacement field due to the adjoint load of Eq. 3.2.3 is

Ax) = gy (x = D3 -5+ 3LP) 0<x<lL (3.2.11)

Shape design sensitivity of the displacement of point x =L is now to be
analyzed. A canti-lever beam with internal sub-division at L/2 is shown
in Fig. 3.2.2. Also in the figure, three different velocity fields are

given, with the following properties:
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(1) System - I; piecewise linear velocity field with slope

discontinuity at x = L/2 (a c0 velocity field).

(ii) System - II; two quadratic velocity fields joined together to

satisfy slope continuity at x = L/2 (a cl velocity field).

(iii) System III; linear velocity field throughout the domain (a cl

velocity field).

The analytical expression for the velocity field for each system

can be written as follows:

For System I,

Vl(x) = 35€9-x 0 <
Vz(x) = Ké&b f—tL-z(l'K % (x - %) %‘-<

For System II,

44b
L
vix) = - Lzl (x% - 3 x) 0 <
48b
2 2 L2 L
V(X)=5b1+—r2—(x--2-) -2-<
Finally, for System III,
=2
V(X) Lx 0 <

From Eqs. 3.2.10 and 3.2.11, one obtains

X

L

<7
(3.2.12)

<L

L

<z
(3.2.13)

<L
<L (3.2.14)
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v
(L,sb)
v
2
7 by b, Y -
X
System-1
'
L,8by+
( 1 6b2)
4 Y i
' L
X
System-11I
v
(L,sb)
fon s
7
T
X
System-I1I

Figure 3.2.1 Three Systems
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z, ='3§T (x3 - 3Lx2 + 3L2x)
_f 2 2 (3.2.15)
2= 7T (X7 - 2x + LT
_ 1 2
lx = 3T (-X + ZLX)
' (3.2.16)

_ 1
lxx- -ET (-X + L)
Considering that a perturbation of &b is given at the free end,

while the other end remains fixed, the predicted change by the boundary

approach can be obtained immediately. Using Eq. 3.2.4, one has
L3

which is the correct result.
Applying the domain approach to System-I, which has a piecewise
- linear Co-ve1ocity field, the derivatives of velocity field are, from

Eq. 3.2.12,

1 _ 2Kéb L
VX = _2_ 0 <x < 7

2 _ 2(1-K)é& L
Vx = J-T-L— 2. < x <L

1 _ 2 _

Substituting Eqs. 3.2.15, 3.2.16, and 3.2.18 into Eq. 3.2.9 yields
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{r

W= J 2 EIGE) (8 - 2k + L3) () (x + L) BB gy

o

L
+ f, 3EIGEp) (% - 2k + L2) () (x + 1) 2(1-K)sb
'2'
+ I-z f(FE—)(‘X +3LX ) —— 2K6b dx + fL (_%_I_)(_x3+3l_x2) 2 l-t 8b dx
0
]
3
- ) @
i3 1 |
= (ger) Gg7) (184K + 36) (3.2.19)

Note that Eq. 3.2.19 is a function of variable parameter K. This result
cannot be true, since the state change must be unique once a normal
design perturbation is given at the boundary.

Next, the domain approach is applied to system-II, which has a cl.
velocity field. One can obtain the derivatives of the velocity field

using Eq. 3.2.13 as

Ve =- -—7—-(2x - L) 0<x<x
2 45b L
Vs = —Z‘(ZX'L) S Feaxcl

o > (3.2.20)
vl = - 21 0<x <
XX L 7

86b
2 _ 8%, )
vxx - LZ F<x <L

y

Substituting Eqs. 3.2.15, 3.2.16, and 3.2.20 into Eq. 3.2.9, one has
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L
L 4b
W = foz E1[3pp) (- 2x + 18) () (x + L) (- -—L?-l-) (2x - L)

86b1

24 3%) () (x + 1) (- —D)
L

+ (i) (3 - 3x

86b
+ ('ZET) (x% - 2x + L?) ('ZéT) (-x? + 2Lx) (- —Lz—l-)] dx

L £y, 2 2. .1 4sb,
2

2

+ (grr) -3+ 3 (@) (x + 1) (-[23)

85b
s R - 2k + 12) (giy) (%2 + 2Lx) (—:}3)‘] dx

L s, 4
I flrp) (<3 +3d) (- T?’l') (2« - L) dx

L 3 5 48,
+ IL flgrr) (7 + 3x%) (—LQ—) (2x - L) dx
2
3
- (EE) (b + o)
fL3
= (3pp) ® (3.2.21)

Note that the result of Eq. 3.2.21 is the same as the result of the
boundary approach Eq. 3.2.17, but differs from Eq. 3.2.19.

The velocity field of System-III is a special case of system-I,
setting the parameter K = 1/2. Therefore, one can get the predicted

change for System-III by evaluating Eq. 3.2.19 with K = 1/2 as
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3
) ) (184 « 3+ 36) @

-<-
o=
n

(3.2.22)

"
Fare
-
j S

which is the correct result.

Note that the predicted changes are exact for ¢! or more smooth
velocity fields, as in Systems-II and -III.

As a theoretical check to see why difficulty arises with only a c0-
velocity field, one can apply the domain approach to System-1, and take
the slope dis-continuity at x=L/2 into consideration. The second

derivative vxx can be defined as

v = 2LZKID i, L (3.2.23)

Using Eq. 3.2.23, the predicted displacement change is

3
) () (184K + 36)

¥

A,) .

+ f (zx o b Zxx A gil:%ﬁlﬁﬁ'g(x - %J dx

( ) (7) (184K + 36) &b + ( ) (64) (92 - 184K) &b

( ) & (3.2.24)

which is correct.
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It is shown in Ref. 21 that, if mapping T(x,t) of Eq. 2.2.1 is a CP
homeomorphism, the Sobolev space H"(Q) for m < p is preserved
by T(x,t). In other words, it is sufficient that the design velocity be
CP regular with p > m where 2m is the order of the governing
differential equation. For the beam problem, m = 2 and sufficient

regularity is
V(x) € ¢P, with p > 2 (3.2.25)

Results of Systems-II and -III show that a Dirac type of
singularity can be avoided by imposing smoothness conditions between
sub-ddmains. For this specific example (beam problem), the design
velocity V should have a continuous first derivative and a piecewise
continuous second derivative, or V is contained in cln Dz. These
results show that the smoothness requirement for this example is lower
by one than the rule of Eq. 3.2.25. However, it must be understood that
Eq. 3.2.25 is a sufficient condition that covers a large class of
problems, giving a general guideline for selecting the design velocity
field.

Note that shape design sensitivity formulas for a beam component in
Eq. 2.2.16 and a plate bending component in Eq. 2.2.27 have the same
highest order derivatives of the design velocity, both velocity fields
should posesses the same order of regularity. The same argument can be
applied to the elasticity problem. The design sensitivity formula for a

plane elastic component in Eq. 2.2.20 has only a first derivative of
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design velocity. This means that the design velocity field for an
elastic component must be at least cO.

As a summary, one may use the sufficient condition of Eq. 3.2.25 in
constructing design velocity fields. However, in some cases the
reqularity requirement can be relaxed, as shown above. One should
carefully apply this test in each case a lower level of regularity is
used, since the range of applicability is still an open question.

This study of regularity of velocity field is applied to the shape
design sensitivity analysis of a plate-beam-truss built-up structure in

Chapter 4, with success.
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IV. NUMERICAL EVALUATION OF THE DOMAIN APPROACH

4.1 Introduction

The domain approach for shape design sensitivity analysis and
regularity requirements on the design velocity field developed in
Chapters 2 and 3 are appiied here to example problems. First, numerical
calculation of shape design sensitivity of a square box is presented in
Section 4.2. The square box is an extremely simplified model of a wing-
box structure. A study of this square box can, howgver, provide a basis
for study of the wing-box. The second examp]e treéted is shape design
sensitivity analysis of a plate-beam-truss built-up structure in Section
4.3. This problem is geometrically simple. However, it demonstrates
singular behavior near component boundaries (interfaces) that may cause
trouble when one uses the boundary approach for SDSA with the finite

element method [22].

4.2 SDSA of a Square Box
As a first numerical test of the domain appfoach to shape design
sensitivity analysis, a square box is analyzed. Results obtained with
the domain approach is compared to results obtained with the boundary

approach.
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4,2.1 System Description

Consider a square box shown in Fig. 4.2.1. The box consists of
five plane elastic components; top, bottom, two sides, and end. Sub-
domains (or patches) and boundary interfaces are numbéred in Fig. 4.2.1
for convinience. Shape design variables of the system are length L,
height H, and depth W of the box.

A Co-velocity field is required on each plane elastic component.
It suffices to use piecewise linear velocity fields on each patch, which

are given in Table 4.2.1. Note that 6L, &H, and W are design changes.

Table 4.2.1 Velocity Fields on Each Patch

Patch Velocity Field
# Definition
i C 2
2 v (GL/L)x1 + (Gwlw)x2 , 1 =1,2
)
2 v o= (8L/L)x; + (SH/H)xy , i = 3,4
%y
5
0 V™ = (GW/w)x2 + (6H/H)x3

External loads are applied along the edges of the top surface,
T13> Ty4» and Tyg, With constant magnitude T acting in the positive x3-
direction, with units of 1b/in. The state variables for this structure

are defined for each component as
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: To1
: "13 ?1 T4
WF' 1 15
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,E ____________ . Tosl3 | T35 % Ta5{®% | Toa
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H Jx3 ]
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23 24
, X Q
3 2
X1
L
X2 T
(a) Dimensions of Square Box 02

(b) Numbering of subdomains
and Interfaces (view in

- . ’ (-)x-direction)
|5 4

3
]

(¢) Local Coordinate on Developed View

Figure 4.2.1 Square Box



z° on nl (top)

z- on 92 (bottom)
3, .

z” on 9 (side 1)
4 , .

z on Q (side 2)

2~ on 95 (end)
In vector form, the state variable is thus

2

" 23’ 24’ ZS]T

z = [zl, z
Boundary conditions are

i =
z =0 along rO =Ty U r02 U r03 U r04,

Interface conditions are

1_ .3
_ 4

1 _

2 _ .3
2 _ 4

68

(4.2.1)




69

zg =z, On Ty
z; = zg on Typ
z§ =2z; on r%ﬁ
and
K

=T along r2 =T33 U r14 U r15, k=3,4,5
K ; .
where nj is the outward normal to T13s Tygs Tpg in the plane of Qs and
o, (24nt=0 along other interfaces.
j 1 J

One may now define-the set Z of kinematically admissible displacement

fields as follows :

Z=1{z: z= (21,22,23,24,25) such that all the above boundary

interface conditions are satisfied}
The variational form of the governing equation is

a(z, 7) = (2),  forall T€2 (4.2.2)

where

5 .
a(z, D) = 1[I I o;(2t)e;(E) o (4.2.3)
=1 e, 1, |
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I Tzl dr (4.2.4)
i .

with r, as the boundary on which the uniform line load T is applied.
The governing equation is given for completeness. For shape design
sensitivity formula derivation, the procedure explained in Chapter 2 is

followed.

4.2.2 Shape Design Sensitivity Formula
As explained in Chapterlz, shape design sensivitity coefficients
for the assembly of components is obtained by summing design
sensitivities associated with each component. However, for this first
example, a more detailed procedure is taken for better understanding.
Using Eqs. 2.2.20 and 2.2.36, one obtains the material derivative
of the energy bilinear form as the sum of the material derivatives of

each component

[a (z, Z]' = % [2,&", )"

5
mzlff%‘i% [%j(z) %j(z)]dn

M5 LI, (72 - 7)) e @] do

Qm‘i,j k,2

ffn 1_gj{cr].j(z“‘) (72} - V)] de

s, . (2") eij('im)](v - V) da] (4.2.5)
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Similarly, one can obtain the material derivative of load linear form,

using Eq. 2.2.21, as

[¢(Z)] = [; Tii}]'dr + fr [g (v(T5z;) » n)}(V + n) dr

) 2

(g T{fi VT(PI)) x=dir, ' (g Ti E} VT(Pl))'y-dir.

+

+

(0 74 %)) +(§ﬁ%Vﬁ%D| (4.2.6)

X-dif‘. y-(ﬁf‘.

where VT(Pj]Ik-dir. is tangential velocity in the k-direction at point
Pj. Note that the last four terms denote corner terms due to movement
of corner points Pl and P2 in Fig. 4.2.1 [23]. From Eqs. 4.2.5 and
4.2.6, and 2.2.37, one abtains

oo T S L Loy g O] o

CiikalV2K * V1g) &35(@)] do

=1 {f I [I
m k,

ﬂmi,j i

' ”nm i?j[sii(zm) (72 - v1;)] dn

- ”9 [1§j uij(z'“) eij(‘z"“)] (v . V) dg}

+ [ [YTrzi'ldr+ [ [] (9(TyZ;) » m)](V - n) dr
r, i r, i

R Ve (Py)) R VT(PI))|

x=dir.

y'diro

CQNE W ¢ T ) (4.2.7)

x=dir. y-dir.
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Consider the von Mises yield stress functional, averaged over a

small region (or finite element) P ¢ Qq’ as

v=f]  e(o(z9)) M da (4.2.8)
nq
where ¢ is the von Mises yield stress with ¢ = [ait agé 30%2-011022]1/2

and M. is a characteristic function on np, defined as

p
1 P
T, @
Moo= P
0 on d\np

One can find the material derivative of Eq. 4.2.8, using Eq.
2.2.37, the adjofnt variable method Eé. 2.2.41, the last term of Eq.
2.2.45, and Eq. 4.2.7, to obtain

= DUL L Lo @0 - )+ oy M0 - vp)) an

- f[g [.2'o§j(zm)eij(l)] (v« V) da]

1

- 2 @)l (v29 . v )] M de
Q. .3 8aij ijke' K L p

+ff oV V)M da-[[ ¢M da [[ (V. V)M da
Q P a P Q P

q ‘ P q
+f [ v(ma) en) (venldr-f J(v(T.x).V)dr
I 1 r, i
’ (g it Yr(Py)) x-dir., ! (g Ty Vr(Py)) y-dir.
FQ TN RE o BT R y-dir. (4.2.9)
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where XA is the solution of the adjoint equation

15

a(y, T) = ff { I 52 (%) (YY) M da, for all TE€Z (4.2.10)
Q ij
q

For comparison, the boundary approach to SDSA can be derived as

f21]

¥g = sgt {fjfstigj [Uij(l )ni((Vzi -9z )« n)

+ oij(z*)nj((vx’;* - ;) + n)] (7« n) dr

+ ”Yst igj[a‘.j(z )eij(l*) ) °1-j(z*‘*)e1-j(x**)] (V + n) dr}

[ ®(VenM dr- ff ¢M da[ (Ven)M dr

p q p
#f [ Oa) en) (Vemldr-f ] (9(Ta) - V)dr
1‘2 1 1‘2 1
! (g Tili VT(PI)) x=-dir. ' (g Tili VT(PI)) y-dir.
) (g Tixi VT(PZ)) x=dir. ' (g Tixi VT(PZ)) y-dir. (4.2.11)

where Yst is a interface between two adjacent components 2 and Q5

with Yot = Vi and z* and z** are the displacements of these components,

respectively. Also, I'_is the boundary of aP and n is the outward

p
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4.2.3 Numerical Results

The square box is discretized into 320, 8-noded, isoparametric
finite elements, having 993 nodes and 1,886 active.degrees-of- freedom.
External load is applied along the edge of the top surface, with 4.77
ib/in intensity in the global positive x3-direction. Young's modulus
and Possion's ratio are 1.0 x 107 and 0.316, respectively. The
thickness of each member is 0.1 inch.

For comparison, shape design sensitivity analysis is performed
using the boundary approach of Eq. 4.2.11 by perturbing the height of
the box. Results are given in the Table 4.2.2. Notice that accuracy
(ratio between predicted change and actual change) of shape design
sensifivity is not acceptable.

The same shape design sensitivity analysis is performed using the
domain approach of Eq. 4.2.9. The result is given in Table 4.2.2. Note
that the measure of accuracy (ratio between predicted change and actual
change) lies in the range of 100 % 5%, except in elements 274, 282, and
284 of Table 4.2.2. However, one may note that those elements are in
low stress regions and the actual changes are small compared to others,
thus precision is lost during finite difference calculation
of [v(0" + &) - v(62)]1/4(6?).

In Table 4.2.3, shape design sensitivity analysis results for a
second test of the box (length as the design variable) are given. Note
that the accuracy measure lies in the same range as before. For
elements 185, 188, 257 thru 263, 265, 266, 271, 274, and 285, the
predicted values are less accurate than others. However, the magnitudes

of actual changes Ay = [¢(b° + &) - w(bo)] for those elements are




Table 4.2.2 SDSA Result for Square Box

Von Mises Streass

oLD

NEW

Using Boundary Approach
(Height as Design)

Actual
Change

Predict
Change

75

Ratio x 100

SIDE1 129
130
131
132
137
138
139
140
145
146

100.634
55.674
39.877
33.640
84.752
54.117
38.092
31.402
71.556
51.390
36.390
29.101
63.926
47.776
33.717
25.627
58.139
43.894
30.186
21.280
52.170
38.922
26.279
18.051
43.708
31.544
23.751
20.094
28.211
26.031
29.026
31.157

171.978
144,285
127.953
119.633
129.443
132.988
127.639
120.844
105.705
117.304

29.774

167.714
140.276
124.235
115.991
126.595
129.603
123.937
117.044
103.260
114.564

-3.385
-3.702
-3.800
-2.445
-2.739

10.550
-0.569
-1.124
-1.050
-17.597
-3.479
-1.394
-1.404
- =17.666
-0.764

69.607
72.046
98.956
87.769
55.990
91.045
112.790
81.655
29.104
152.298
87.097
57.337
24.940
163.781
76.308
82.142
111.533
62.833
161.945
172.175
171.555

247.414
14.194
30.219
28.818

617.858

102.780
37.659
36.939

722.498
27.898



Table 4.2.2 continued

END

147 -

148
153
154
155
156
161
162
163
164
169
170
171
172
177
178
179
180
185

186 .

187
188

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

118.301
115.086
93.644
103.049
106.120
104.972
84.565
91.349
93.915
93.154
76.844
80.706
81.949
81.234
68.597
69.560
70.093
70.122
55.101
55.588
.59.227
60.898

43.062
49.130
53.527
54.320
52.277
47.352
38.161
22.026
42.606
45,127
47.240
46.147
42.773
37.348
29.527
26.142
44,396
40.949
39.797
36.623
31.977
27.134
24.686
31.839
45.666
39.156
35.136

115.132
111.665
91.443
100.693
103.469
102.105
82.598
89.277
91.677
90.803
75.138
78.899
80.053
79.317
67.237
68.041
68.533
68.569
54.259
54.557
58.043
59.585

42.964

43.534

52.527
53.083
50.894
46.036
37.128
21.363
42.417
44,959
46.638
45.203
41.679
36.309
28.631
25.019
43.911
40.931
39.664
36.211
31.350
26.357
23.635
30.339
45.012
39.157
35.284

-3.169
“3 0421
-2.201
-2.357
-2.651
-2.867
-1.967
-2.072
-2 0238
-2.351
"1 ° 707
-1.807
-1.895
-1.917
-1 0360
-1.519
-1.560
-1.553
-0.842
-1.031
-1.184
-1.314

-0.098
-0.597
-1.000
-1.268
-1.383
-1.316
-1.032
-0.663
-0.189
-0.168
-0.603
-0.944
-1.094
-1.038
-0.896
-1.123
"0.485
-0.018
-0.133
-0.412
-0.627
-0.777
-1.051
-1.501
-0.654

0.001

0.147

-1.278
-1.395
-17.710
-0.492
-1.120
-1.103
-16.821
-0.409
-1.537
-0.212
-16.429
0.282
-1.462
0.382
-1.233
0.346
-7.825
0.053
-11.464
1.857
-0.472
-0.459

-9.016
-1.017
-0.566
-0.528
-0.622
-0.599
-0.414
-0.260
-7.311
-0o683
-0.656
-0.662
-0.609
-0.4380
-0.408
-0.749
-6.642
-0.298
-0.278
-0.326
-0.369
-0.444
-0.710
-1.045
-6.351
-0.033

0.048

40.314
40.764
804.585
20.895
42.230
38.476
855.140
19.761
68.662
9.034
962.725
-15.586
77.149
-19.906
90.676
-22.768
501.744
-30395
1361.241
-180.119
39.902
34.920

9180.063
170.555
56.562
41.679
44,946
45.499
40.079
39.252
3864.989
405.541
108.831
70.104
55.694
46.260
45.469
66.688
1368.251
1637.088
208.631
79.069
58.821
57.154
67.571

76

69.656

971.712
-3246.602
32.407




Table 4.2.2 continued

284
285
286
287
288

29.856
23.974
20.182
22.733
34.960

29.859
23.728
19.539
21.538
33.279

0.003
-0.246
-0.644
-1.195
-1.681

0.037
-0.125
-0.489
-0.954
-1.183

Table 4.2.3 SDSA Result for Square Box

VYon Mises

oLD

Using Domain Approach
(Height as Design)

Stress

NEW

Actual
Change

Predict
Change

1072.141
50.610
75.990
79.764
70.385

77

Ratio x 100

100.63443
55.67394
39.87734
33.64000
84.75172
54.11750
38.09229

-~ 31.40171

71.55644
51.39030
36.38969
29.10066
63.92617
47.77615
33.71692
25.62709
58.13858
43.89400
30.18578
21.28009
52.16973
38.92171
26.27852
18.05108
43.70809
31.54422
23.75135
20.09424
28.21065
26.03146
29.02616
31.15718

97.71343
53.92664
38.60680
32.57416
82.13030
52.39635
36.88886
30.42382
69.20184
49.74436
35.25582
28.22262
61.74584
46.21547
32.67051
24.88163
56.11622
42.43542
29.24186
20.67423
50.35392
37.62587
25.44055
17.49795
42.24665
30.51825
22.92610
19.32151
27.40639
25.07839
27.79707
29.77414

-2.92100
-1.74729
-1.27054
-1.06584
-2.62142
-1.20343
-0.97790
-2.35460
-1.64594
-1.13386
-0.87803
-2.18033
-1.56068
-1.04641
-0.74546
-2.02236
-1.45858
-0.94391
-0.60586
-1.81580
-1.29584
-0.83797
-0.55313
-1.46144
-1.02597
-0.82525
-0.77274
-0.80426
-0.95307
-1.22909
-1.38304

-3.02560
-1.80964
-1.31552
-1.10330

-2.71628 .
. =1.78240

-1.24584
-1.01214
-2.439381
~-1.70450
-1.17384
-0.90871
-2.25854
-1.61636
-1.08343
-0.77144
-2.09421
-1.51070
-0.97748
-0.62693
-1.87975
-1.34207
-0.86795
-0.57285
-1.51226
-1.06236
-0.85558
-0.80181
-0.83223
-0.98874
-1.27622
-1.43646

103.58116
103.56785
103.54027
103.51473
103.61893
103.55929
103.52454
103.50134
103.61896
103.55790
103.52559
103.49418
103.58715
103.56736
103.53843
103.48579
103.55295
103.57378
103.55581
103.47671
103.52165
103.56740
103.57855
103.56495
103.47719
103.54706
103.67493
103.76186
103.47717
103.74283
103.83477
103.86274



Table 4.2.3 continued

BOTTOM 65
66

SIDE 129

86.28385

49.20760
35.10166
29.26721
75.61336
47.86338
33.16758
26.96837
65.59970
45,52028
31.42032
24.58127
59.01335
42.63218
29.11188
21.34630
53.42710
39.32319
26.26198
17.77022
47.01331
34.66051
23.27783
16.13709
37.36988
27.64675
22.48638
20.66130
21.39204
25.40962
31.19434
34.36406

171.97848
144,28489
127.95324
119.63305
114.31134
111.82036
114.85173
127.43202
129.44261
132.98811
127.63870
120.84447
115.99465
113.02475
109.97003
102.30763
105.70496

82.99484
47.31834
33.75394
28.14580
72.71050
46.02199
31.89516
25.93788
63.06451
43.76816
30.21688
23.64699
56.72553
40.98418
27.99637
20.54120
51.35160
37.79588
25.25324
17.10474
45.18366
33.31319
22.38046
15.52403
35.91812
26.57968
21.60390
19.83577
20.56917
24.40117
29.91584
32.93564

167.71438
140.27579
124.23535
115.99074
110.62116
107.95628
110.55992
122.52440
126.59456
129.60304
123.93687
117.04449
112.13318
109.10592
106.11951

98.72379
103.25986

-3.28901
-1.88926
-1.34772
-1.12141
-2.90286
-1.84139
-1.27242
-1.03049
-2.53519
-1.75212
-1.20345
-0.93428
-2.28782
-1.64800
-1.11551
-0.80510
-2.07550
-1.52731
-1.00874
-0.66548
-1.82965
-1.34731
‘.'0 089738
-0.61306
~-1.45176
-1.06706
-0.88247
-0.82552
-0.82287
-1.00845
-1.27850
-1.42842

-4.26410
-4.00910
-3.71789
-3.64231
-3.69018
-3.86407
-4.29181
-4.90762
-2.84805
-3.38506
-3.70183
-3.79998
-3.86147
-3.91883
-3.85052
-3.58384
-2.44509

-3.39641

=1.95116

-1.39162
-1.15766
-2.99854
-1.90177
-1.31370
-1.06359
-2.61931
-1.80964
-1.24241
-0.96399
-2.36378
-1.70249
-1.15172
-0.83036
-2.14435
-1.57816
-1.04169
-0.68615
-1.89021
-1.39214
-0.92693
-0.63284
-1.49927
-1.10201
-0.91262
-0.85490
-0.84901
-1.04356
-1.32590
-1.48260

-4.41063
-4,13931
-3.83449
-3.75305

-3.80276

-3.98556
-4.43088
-5.06634
-2.95053
-3.48761
-3.81286
-3.91629
-3.98045
-4.03815
-3.96507
-3.69474
-2.53832

103.26564
103.27625
103.25781
103.23289
103.29579
103.27898
103.24392
103.21208
103.31823
103.28330
103.23730
103.18063
103.32000
103.30660
103.24594
103.13828
103.31712
103.32918
103.26607
103.10558
103.30984
103.32707
103.29384
103.22522
103.27249
103.27447
103.41663
103.55854
103.17777
103.48124
103.70736
103.79333

103.43639
103.24788
103.13623
103.04038
103.05064
103.14402
103.24042
103.23407
103.59818
103.02925
102.99912
103.06096
103.08108
103.04454
102.97474
103.09456
103.81294
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Table 4.2.3 continued

END

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192 .

257
258

117.30361
118.30094
115.08585
110.95022
106.22925
99.14657
85.65457
93.64369
103.04949
106.11978
104.97155
101.32153
95.62944
87.25962
74.98447
84.56467
91.34894
93.91524
93.15356
89.80530
84.06349
75.93268
65.60454
76.84401
80.70596
81.94871
81.23386
78.26009
72.71803
64.95500
56.29105
68.59733
69.56015
70.09274
70.12211
67.85988
62.55606
54.55658
45,73187
55.10083
55.58785
59.22714
60.89820
59.44980
54.46755
45.66123
32.61714

43.06239
49.13032

- 114.56425

115.13183
111.66459
107.44962
102.79243
95.92302
82.65421
91.44257
100.69251
103.46860
102.10465
98.38944
92.76005
84.52179
72.34916
82.59761
89.27698

91.67677

90.80305
87.42771
81.71003
73.60904
63.29090
75.13751
78.89944
80.05344
79.31704
76.35330
70.81259
63.01863
54,29555
67.23706
68.04109
68.53318
68.56864
66.31273
61.00636
52.98256
44.10885
54.25866
54.55671
58.04332
59.58460
58.06919
53.10190
44.39744
31.53561

42.96419
48.53379

-2.73937
-3.16911
-3.42127
-3.50061
-3.43676
-3.22355
~3.00035
-2.20111
-2.35698
-2.65119
-2.86690
-2.93210
-2.86939
-2,73783
-2.63531
-1.96706
-2.07196
-2.23847
-2.35051
-2.37759
-2.35346
-2.32364
-2.31364
-1.70650
-1.80652
-1.89527
-1.91682
-1.90678
-1.90544
-1.93637
-1.99550
-1.36027
-1.51906
-1.55956
-1.55346
-1.54715
-1.54970
-1.57401
-1.62302
~0.84218
-1.03114
-1.18383
-1.31360
-1.38061
~1.36565
-1.26379
-1.08153

-0.09821
-0.59653

-2.82433
=3.25755
-3.51647
-3.59917
-3.53362
-3.31679
-3.09651
-2.28507
-2.43365
-2.72399
-2.94150
-3.00942
-2.94810
-2.81852
-2.71972
-2.04206
-2.14015
-2.30128
-2.41224
-2.44060
-2.41896
-2.39284
-2.38734
-1.77203
-1.86651
-1.95133
-1.97041
-1.95968
-1.96003
-1.99462
-2.05872
-1.41412
-1.57245
-1.61089
-1.60041
-1.59164
-1.59491
-1.62196
-1.67479
-0.87811
-1.07550
-1.22911
-1.35720
-1.42205
-1.40555
-1.30200
-1.11627

-0.10655
-0.62333

103.10152
102.79074
102.78252
102.81556
102.81814
102.89258
103.20472
103.81424
103.25282
102.74617
102.60214
102.63719
102.74292
102.94697
103.20290
103.81273
103.29122
102.80579
102.62611
102.65009
102.78294
102.97791
103.18539
103.83995
103.32081
102.95786
102.79572
102.77393
102.86528
103.00856
103.16854
103.95861
103.51504
103.29152
103.02234
102.87565
102.91745
103.04622
103.18977
104.26743
104.30251
103.82540
103.31901
103.00151
102.92142
103.02384
103.21215

108.50170
104.49200
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Table 4.2.3 continued

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

53.52694
54,32027
52.27702
47.35170
38.16057
22.02591
42.60581
45,12722
47.24021
46.14709
42.77325
37.34775
29.52699
26.14174
44.39629
40.94931
39.79717
36.62302
31.97706
27.13442
24.68556
31.83936
45.66577
39.15575
35.13625
29.85577
23.97411
20.18210
22.73317
34.96003

52.52667
53.05260
50.89411
46.03594
37.12849
21.36332
42.41664
44.95884
46.63766
45.20271
41.67905
36.30935
28.63060
25.01903
43.91085
40.93111
39.66406
36.21113
31.34971
26.35718
23.63504
30.33886
45.01216
39.15678
35.28374
29.85918
23.72807
19.53853
21.53773
33.27873

-1.00027
-1.26766
-1.38291
-1.31576
-1.03208
-0.66259
-0.18917
-0.16338
-0.60255
-0.94438
-1.09419
-1.03839
-0.89639
-1.12271
-0.48544
-0.01820
-0.13312

-0.41188
-0.62736

-0.77724
-1.05052
-1.50051
-0.65361

0.00103

0.14750

0.00341
-0.24604
-0.64357
-1.19544
-1.68131

-1.04084
=1.31371
~-1.42855
-1.35624
-1.06297
-0.68699
-0.21486
-0.18060
-0.62371
-0.97535
-1.12847
-1.07113
-0.93170
-1.16931
-0.52915
-0.03538
-0.13907
-0.42241
-0.64641
-0.80728
-1.09766
-1.56030
-0.70665
-0.02103

0.14909

0.00750
-0.25508
-0.67564
-1.24756
-1.74729

Table 4.2.4 SDSA Result for Square Box
Using Domain Approach

(Length as Design)

Von Mises Strass

OLD

NEW

Actual
Change

Predict
Change

104.05629
103.63238
103.29994
103.07644
102.99386
103.68263
113.57790
107.26023
103.51193
103.27983
103.13251
103.15215
103.93929
104.15009
109.00276
194.42853
104.47462
102.55573

- 103.03756

103.86422
104.48742
103.98524
108.11477

-2040.93735

101.07706
219.60867
103.67386
104.98325
104.36047
103.92415

80

Ratio x 100

100.63443
55.67394
39.87734
33.64000
84.75172
54.11750
38.09229
31.40171
71.55644
51.39030

103.78530
58.23363
42.20731
35.95122
86.95996
56.63499
40.50634
33.73828
73.28717
53.53043

3.15087
2.55969
2.32996
2.31122
2.20825
2.51750
2.41405
2.33657
1.73073
2.14013

3.07549
2.50390
2.29028
2.28113
2.14499
2.47243
2.37384
2.30087
1.67965
2.10877

97.60764
97.82047
98.29699
98.69797
97.13557
98.21000
98.33412
98.47234
97.04853
98.53464




Table 4.2.4 continued

BOTTOM

36.38969
29.10066
63.92617
47.77615
33.71692
25.62709
58.13858
43.89400
30.18578
21.28009
52.16973
38.92171
26.27852
18.05108
43.70809
31.54422
23.75135
20.09424
28.21065
26.03146

29.02616

31.15718
31.15718
29.02616
26.03146
28.21065

86.28385
49.20760
35.10166
29.26721
75.61336
47.86338
33.16758
26.96837
65.59970
45,52028
31.42032
24.58127
59.01335
42.63218
29.11188
21.34630
53.42710
39.32319
26.26198
17.77022
47.01331
34.66051
23.27783

38.66464
31.38476
65.38354
49.51865
35.65189
27.63564
59.36943
45,30579
31.68205
22.79503
53.22842
40.07670
27.32058
18.91286
44.61852
32.41523
24.28852
20.33228
28.74663
26.38137
29.23143
31.30541
31.30541
29.23143
26.38137
28.74663

89.52932
51.70151
37.35064
31.49583
78.01060
50.30632
35.46582
29.18948
67.47185
47.63719
33.59012
26.74014
60.55661
44.38781
30.98445
23.26564
54,71222
40.76850
27.73868
19.23274
48.10625
35.85638
24.31058

2.27495
2.28411
1.45737
1.74250
1.93497
2.00855
1.23085
1.41179
1.49627
1.51493
1.05869
1.15500
1.04206
0.86178
0.91043
0.87101
0.53717
0.23804
0.53597

0.34990°

0.20527
0.14823
0.14823

-0.20527

0.34990
0.53597

3.24548
2.49391
2.24899
2.22862
2.39724
2.44294
2.29825
2.22111
1.87214
2.11691
2.16979
2.15887
1.54326
1.75563
1.87257
1.91934
1.28512
1.44531
1.47670
1.46252
1.09294
1.19587
1.03275

2.24349

- 2.25004

1.42286
1.72446
1.91733
1.98508
1.21307
1.40998
1.49238
1.50010
1.04999
1.17203
1.04642
0.84558
0.92291
0.88778
0.53220
0.22397
0.59021

0.33047 -

0.19831
0.15058
0.15058
0.19831
0.33047
0.59021

3.17833
2.44280
2.21072
2.19866
2.34965
2.40017
2.25789
2.18423

1.83760

2.08787
2.13633
2.12160
1.52421
1.74194
1.85249
1.89200
1.28203
1.44731
1.47071
1.44528
1.10137
1.20787
1.03340

98.61675
98.50847
97.63145
98.96468
99.08855
98.83146
98.55525
99.87154
99.74015
99.02083
99.17791
101.47506
100.41790
98.12008
101.37149
101.92468
99.07399
94.09153
110.11999
94.44750
96.60794
101.58780
101.58780
96.60794
94.44750
110.11999

97.93089
97.95028
98.29852
98.65573
98.01466
98.24920
98.24419
98.33964
98.15480
98.62810
98.45749
98.27359
98.76615
99.22044
98.92778
98.57533
99.75935
100.13849
99.59451
98.82123
100.77178
101.00332
100.06302
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Table 4.2.4 continued

SIDE

108
113
114
115
116
121
122
123
124

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

16.13709
37.36988
27.64675
22.48638
20.66130
21.39204
25.40962
31.19434
34.36406

171.97848
144.28489
127.95324
119.63305
114.31134
111.82036
114.85173
127.43202
129.44261
132.98811
127.63870
120.84447
115.99465
113.02475
109.97003
102.30763
105.70496
117.30361
118.30094
115.08585
110.95022
106.22925
99,14657
85.65457
93.64369
103.04949
106.11978
104.97155
101.32153
95.62944
87.25962
74.98447
84.56467
91.34894
93.91524
93.15356
89.80530
84.06349

. 75.93268

65.60454

16.92466
38.29384
28.51542
22.95476
20.81388
21.86005
25.63305
31.31165
34.46283

174.92077
147.17610
130.60632
122.23507
116.95689
114.60309
117.97635
130.94177
131.12998
135.18474
130.19786
123.52891
118.74030
115.79395
112.59708
104.61563
107.07836
118.88574
120.29037
117.32766
113.27138
108.47626
101.16379
87.45312
94.81903
104.29693
107.59368
106.62767
103.03800
97.29838
88.82320
76.45953
85.55652
92.35470
94.99255
94.28181
90.94592
85.20942
77.10497
66.80416

0.78757
0.92397
0.86867
0.46838
0.15259
0.46801
0.22343
0.11731
0.09877

2.94229
2.89121
2.65307
2.60202
2.64555
2.78273
3.12462
3.50974
1.68736
2.19663
2.55916
2.68444

2.74565

2.76920
2.62705
2.30800
1.37340
1.58213
1.98943
2.24181
2.32116
2.24701
2.01721
1.79855
1.17534
1.24744
1.47390
1.65611
1.71647
1.66894
1.56358
1.47505
0.99185
1.00576

107730

1.12825
1.14062
1.14593
1.17229
1.19962

0.77243

- 0.93633

0.87661
0.46698
0.14922
0.47243
0.22547
0.12479
0.11078

2.83083
2.72701
2.55823
2.52531
2.57766
2.71857
3.05748
3.43456
1.63050
2.13853

2.49756 .

2.61374
2.68257
2.71224
2.57702
2.25407
1.30398
1.53328
1.94144
2.19249
2.27480
2.20489
1.97823
1.75770
1.12334
1.19562
1.43087
1.61890
1.68149
1.63633
1.53344
1.44836
0.94271
0.95899
1.03854
1.09605
1.11172
1.11992
1.15121
1.18618

98.07728
101.33766
100.91393

99.70162

97.79369
100.94410
100.91448
106.37442
112.15702

96.21181
94.32052
96.42536
97.05197
97.43403
97.69435
97.85138
97.85795
96.63030
97.35510
97.59316
97.36630
97.70237
97.94317
98.09553
97.66333
94,94527
96.91255
97.58745
97.79982
98.00300
98.12533
98.06733
97.72890
95.57512
95.84590
97.08052
97.75267
97.96232
98.04628
98.07268
98.19018
95.04516
95.35052
96.40147
97.14540
97.46585
97.73080
98.20215
98.87979
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Table 4.2.4 continued

END

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

76.84401
80.70596
81.94871
81.23386
78.26009
72.71803

-64.95500

56.29105
68.59733
69.56015
70.09274
70.12211
67.85988
62.55606
54.55658
45.73187
55.10083
55.58785
59.22714
60.89820
59.44980
54.46755
45.66123
32.61714

43.06239
49.13032
53.52694
54.32027
52.27702
47.35170
38.16057
22.02591
42.60581
45,12722
47.24021
46.14709
42.77325
37.34775
29.52699
26.14174
44.39629
40.94931
39.79717
36.62302
31.97706
27.13442
24.68556
31.83936
45.66577

77.65623
81.50506
82.70473
81.91789
78.90258
73.39538
65.75554
57.23964
69.21429
70.15992
70.53774
70.41920
68.09515
62.83363
54.99360
46.41994
55.48157
55.81064
59.30341
60.90101
59.43476
54.48607
45.77325
32.92948

43.02243
49.09116
53.50754
54.31034
52.27824
47.36369
38.16603
22.00883
42.62436
45.11601
47.26791
46.19714
42.82741
37.38730
29.53403
26.19295
44.47833
40.96752
39.82967
36.66663
32.01814
27.16644
24.73067
31.99465
45.78814

0.81222
0.79910
0.75602
0.68403
0.64249
0.67735
0.80054
0.94859
0.61696
0.59977
0.44500
0.29709
0.23527
0.27757
0.43702
0.68807
0.38073
0.22279
0.07627
0.00281
-0.01504
0.01852
0.11203
.0.31234

-0.03996
-0.03916
-0.01940
-0.00992
0.00122
0.01200
0.00546
-0.01708
0.01855
-0.01121
0.02770
0.05005
0.05416
0.03956
0.00704
0.05121
0.08203
0.01822
0.03250
0.04361
0.04108
0.03201
0.04511
0.15529
0.12237

0.75988

- 0.75524

0.72246
0.65822
0.61966
0.65803
0.78729
0.94555
0.53167
0.56805
0.41914
0.28300
0.22166
0.26628
0.43011
0.69057
0.05267
0.29350
0.06558
0.00516
-0.01861
0.01608
0.11082
0.31473

0.06560
0.00872
-0.00629
~0.00222
0.00657
0.01579
0.00782
-0.01706
0.02982
-0.02510
0.03331
0.05727
0.06086
0.04516
0.01035
0.05454
0.08544
0.01337
0.03146
0.04665
- 0.04544
0.03652
0.04968
0.16361
0.12677

93.55582
94.51046
95.56134
96.22771
96.44573
97.14800
98.34549
99.67962
86.17570
94.71189
94.18829
95.25776
94.21444
95.93328
98.41811
100.36360
13.83486
131.73681
85.99149
184.09342
123.72023
86.83648
98.92143
100.76460

-164.15975

-22.28038
32.43450
22.39806

537.81326

131.61393

143.22216
99.88791

160.72709

223.82650

120.26333

114.42115

112.37168

114.17577

146.99528

106.51004

104.15643
73.40770
96.80740

106.96071

110.61912

114.08903

110.12954

105.36131

103.59741
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Table 4.2.4 continued

282
283
284

39.15575
35.13625
29.85577
23.97411
20.18210
22.73317
34.96003

smaller than others.

accurate.

4,2.4 Discussion

39.19432
35.16403
29.87675
23.98394
20.19824
22.80974

35.17924 -

0.03857
0.02779
0.02098
0.00983
0.01614

0.07657

0.21920

0.03718

- 0.02644

0.02200
0.01220
0.01924
0.08197
0.23069

Thus, the finite differences may not be

96.39331

95.14028
104.88641
124.06492
119.19564
107.05609
105.24148

The above results indicate that accuracy of the boundary approach

84

for built-up structures is poor, whereas accuracy of the domain approach

is excellent. Note also that derivation of shape design sensitivity

formulas is greatly simplified by using the domain approach.

None of

the integration by parts, formal operator equations, or boundary

interface conditions are necessary during derivation.

Sensitivity

results are obtained by simply adding contributions from each component,

as long as a legitimate design velocity field (satisfying regularity

requirements) is used throughout the domain.

4.3 Plate-Beam-Truss Built-up Structure

In this section, shape design sensitivity analysis of a plate-beam-

truss built-up structure is performed, using the domain approach for

shape design sensitivity analysis. The same problem was treated by the

boundary approach in Ref. 22,
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4,3,1 System Description

Consider a built-up structure made up of plates, beams, and
trusses, as shown in Fig. 4.3.1. It is a modeled.shape of a beam-plate
grillage supported by four sets of four-bar trusses. The dotted lines
are supporting trusses, and solid lines are beam stiffners. Due to
symetry of the structure, only one quarter of the structure is shown in
the figure. It is assumed that plates and beams are welded together so
that enerqy is not dissibated during deformation. Design variables for
this built-up structure are thickness t;(x,y) of each plate component,
width dg(x) and the height h;(x) of each longitudinal beam component,
width dy(y) and height hy(y) of each transverse beam component, constant
cross-sectioné] area Az of the 4-bar truss‘components, positions by and
bp of transverse beams, and positions by and by of longitudinal beams.

In vector form, this is

b= [t;s d;u Ais dys My Ay by, by, by by]T
It is assumed that the lengths of the trusses are fixed, but that they
may change their ground positions, and that the outside boundary of the
entire structure does not vary, i.e., only locations bj, i=1, 2, 3, 4 of
the beams are shape variables.

Dimensions of the structure and the numbering and spacing of beams
in both directions are shown in Fig. 4.3.1. Coordinates of intersection
points of beams and plates are supposed to be in the mid-planes of the

plates and neutral axes of the beams.

C-a
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Figure 4.3.1

Dimension and Numbering of Quarter Plate
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Applied loads are
f. e L2(d) i=1, 2 9
.i Ql, » s o0y

where f;(x,y) are defined as distributed loads on the plate and the
numbering convention on the sub-domains are also shown in Fig. 4.3.1.
Domains of plates, longitudinal beams, and transverse beams are denoted,

respectively, as follows:

plate 9;
1§ngitudina1 beams 9;
transverse beams g§
truss n:

The state variables for this built-up structure consist of
displacements 2! of each plate component, displacements wl and rotations Bi
of each longitudinal beam component, displacements
vk aﬁd rotation ek of each transverse beam component, and displacements ut

of truss members, as follows :

i
bd on

wj and Bj on. ﬂ%
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vK and eK on n§
L )
u on g,

The following interface conditions are enforced in the finite
element model: At interfaces between plate and beam components, lateral
deflections of plate and beam components are the same. That is, for

longitudinal beams,

wl(x) = zlkx,b3) = zz(x.b3)
W) = 2 (xibg) = 20(xiby)
w(x) = 2°(x,by) = 2°(x,b3)
wH(x) = ZZ(X.b4) = 23(x,b4)
W (x) = zs(x,b4) = z7(x,b4)
Wi = 2ixby) = 22 (x,by)

and for transvers beams,

Hy) = 2y = 24 (bg.y)
) = zz(bl,y) - zs(bl,y)
Bly) = 20p.y) = 2 (b))
) = 24(b2,y) = zs(bz,y)




)

vo(y)

The normal slopes of plate components are the same as the torsion

angles of beams that are attached at the interfaces.

longitudinal beams,
Bl = z; = zj
S
g3 - z; = zy
84 = 25 = zj
85 = 25 = z;
86 = zg = 23

and for

the plates and transvers beams,

>xX w x MN X -

x

6
z"(b,,y)

z7(b2,y)

= zs(bz,y)

zg(bz,y)

89

For the plates and
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5 6 _ .8
6--zx—zx
6 _ 7 _.9
ezzx-zx

The torsional angles of transverse beams and the axial slopes of
longitudinal beams must be the same at the intersections of beams; i.e.,

at points py,

P1 ot = wi = wi
P2. 62 = w: = wi
P3! 64 = wi = w:
P4: 65 = wi = wg

Similarly, the torsional angles of longitudinal beams and axial slopes

of transverse beams must be the same at intersentions of beams; i.e., at

points Pis

1 _.1_ 2
Pl g = Vy = Vy
4 2 3

p = =
2 B Vy vy
2_.4_ 5
P3 B - Vy - Vy
5 5 6

p = =
4 8 vy vy
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It is assumed that each lateral displacement is evaluated at the
middle plane of the plates and at the neutral axes of beams. Then, the
lateral deflections of crossing beams and trusses must be the same, at

the intersection points; i.e., at points Pi»

©
[ ) -
< <
" "
< <
- -
< <
" "
x =
L L J
< <
n "
LS z

w
<
[}
<

With the assumption that there are no in-plane deformations in the
plates and beams, the plate-beam structure that rests on the 4-bar
trusses is pressumed to move as a rigid body in the plane of plates.
Finally, the displacement of the bottom of each truss component is zero,
since it is fastened to a rigid foundation.

One can now define the set Z of kinematically admissible
displacement field as

Z= {a: a=(zi,wi,8j,vK,eK,uz) such that all the above boundary

interface conditions are satisfied}

4.3.2 Shape Design Sensisitivty Analysis
Applying the design component idea, shape design sensitivity

coefficients of the built-up structure are obtained by adding shape
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design sensitivities of each component in the structure. Using Eqgs.

2.2.11, 2.2.16, 2.2.20, 2.2.24, 2.2.25, 2.2.36, Qnd 2.2.37, one obtains

. X i Y i Xp W
a(z,2) = Z /I D [4(zxxzxxvx+ zyyzyyvy) v(zxxzyy+ 2.7 Zz)(V Yy)

- (ot Zyyyy) W B+ (3 ) + 203 Wy
+ (g E;y *2,7) Wy ¢ 21 2Ty (G + )
v (5 T, ¢ ;y Y VE (zy Tt 20,20) W] day

+3 . er(si‘si) V< da,

i'e

+3 Ifé 6" (6 B) ¥ da

+JZ f el @ ) vE e (wl Wor Wl W) VX da,

R “[30yy Ty ) ¥y + Oy Ty viy¥y) ¥y das

. ”g} (£,%,) (v - V) day (4.3.1)

where
E = Young's modulus

Shear modulus

(2]
it




D = Ed/12(1-vF)

Jj ,JK = Torsion constant

i K _ . .

I',I" = Moment of inertia

The stress constraint functional can be defined, using the

characteristic function approach on o nq, as

=] #(e(z) M, an
Q
q
where ¢ is the von Mises failure criterion, as

. 2 1/2
$ = [dxx + Yy * 3°xy Txx yy]
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(4.3.2)

The shape design sensitivity formula can be derived using Egs.

2.2.37, 2.2.41, the last term of Eq. 2.2.45, and Eq. 4.3.1 as

. i i iy i
vo=1 0l [4(zAV+zAV)+vzxxAyy

: 91 xx“xx' x' “yy'yy'y
i i i i
- (zxxxxx*' zyy)‘yy) o V) + 2(1-1) zxylxy

id
* (Bt 2 y) e * (3 Zhyy + 20y

| iy X i
+ \.-(zx vy Zyy"x) Vix * v(z + 2z

.Y.Y XX) (V

yxx xx"y

W)
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PTG e L S o

i Xy “xy
% |

J1d J 4 yX Jyd i . Jy yx
+ 2 f Bl [ w‘)](xxxxvx * (wXAXX + wix)‘x) vxx] dnz

A e KK T de

KK 13 K 5K g 4 (K
1 BTN [3 v A W (vhyy vy AW

Ko Yyytyyy

) ;
ffnz-z- [4A2(1-v+v2)(zq Vo 29 W) 2A2(1-4v+v2)(zgxz;y)(v.v>

3

xx'x  “qq'y

20 AyX179 29 YA2(1-av+u) (29 79y%429 ;9
+ 2A%(1-v+v )(Zxxzxvxxzyy yvyy) A%(1-4v+v )(z vy xvxxzxxzyvyy)

2 2
+ 68° 29 (V - V)] M, day

+] T e M day + ] fT (FAY) (7 V) de

9 , L)
- ”szq ¢ Mp dQ qu(v « V) Mp de, (4.3.3)
1 1

where A is the solution of the adjoint equation of Eq. 2.2.40, which can

be rewritten for this problem as

_ 34, q -—
a(x, X) = ff ) (z') o,.(X) M_d,, forallX€z
9? i aaij ij p 1

and

’(l-vz) ’ (1+v)
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Due to Symmetry, only one quarter of the structure is considered.
The quarter plate is divided into 9 sub-domains( or patches) and 400
non-conforming rectangular plate elements with 12 degrees-of-freedom
[27] are used to discretize the quadrant. Eighty beam elements are used
to model the four beam stiffners. Four-bar trusses are used as
supports. The total number of active degrees-of-freedom of the system
is 1281.

The result of Chapter 3 is applicable for constructing the design
velocity field. Beam and bending plate components require Cl-regu1ar
velocity fields between patches. Hermite cubic polynomials, which
assure C! continuity at interfaces, are used to generate design velocity
fields. In Fig. 4.3.2, velocity V¥(x) in the x-direction is plotted.

Note that a Cl velocity field is obtained by imposing zero slope at each

interface.

(=]
v a

-4

0.75

0.50

T o ae ee an e e e w v = e o ar e e o E e e o . ow w)

0.00

0.0 b1

Figure 4.3.2 Design Velocity VX Along x-Axes
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The beam stiffners are allowed to move transversally only.
Consequently, the x-direction component VX of velocity V is a function
of x only and the y-direction component W is a function of y only. The

velocity fields in each patch can be written as in Table 4.3.1, where

Table 4.3.1 Velocity in Each Patch

e | v | v

a | Y | )b

GG
) | )
GG

GG
G
v | ()’
WP | (¥)®
VR | (¥)?

o-pto s-anoo t—‘n\l .-pox o--nm ;-p-h o—pw

—
-
»
~—
[y
[l

- (B EE-B) o
a

(V)2 = (a—é) € (5 -33) (o) - 6b%) + b,

2y 3 3a
(a—g) £ (g-=) o, + §b,

o)
-
x
| —
W
n
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Wi=- B2 0-B) e

b> 3
(V‘Y)z = (-b%-) n’ (n - 3’2) (85 - 8by) + sby
(Vy)3 = ﬁ;%) n (n - é%) 6b4’+ &b,

with

(8, n): a patch coordinate system originated at the lower left

corner of each patch, and

a,b: dimensions of each patch in x- and y-directions

as shown in Fig. 4.3.3.

n

0 d —

Figure 4.3.3 Patch Coordinate System

This problem was solved by Lee and Choi [22], using the boundary
approach, with considerable difficulty in handling boundary elements of
each patch. The accuracy of those boundary elements deteriorate with
ratio (between predict and actual changes times 100) ranging from -98.2
to 515.5. SDSA results obtained using domain approach are given in

Table 4.3.2. The perturbation is a 0.25% change of each design
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parameter. The ratio between predicted change and actual change is
excellent for all elements located inside and adjacent to the beam
stiffners. This shows that the domain approach of\SDSA can handle
singular behavior across the beam stiffners much better than the
boundary approach.

Next, as a test, a piecewise linear veTocity field is used without
considering slope discontinuity at each interface, to see the numerical
effect of terms associated with slope jumps. As explained in Chapter 3,
a piecewise linear velocity field can be used only after considering
singular behavior along the interfaces. A part of the SDSA result is
given in Table 4.3.3. This clearly indicates that regularity of the
desigﬁ velocity field in the domain is a crucial factor of the domain

approach of SDSA.

Table 4.3.2 SDSA Results for Truss-Beam-Plate
Built-up Structure Using the Domain

Approach

Element Von Mises Stress Actual Predict Ratio

Number oLD NEW Change Change %
81 49.128 50.043 0.915 0.915 100.101
83 40.429 41.289 0.860 0.861 100.103
85 34.279 34.881 0.602 0.600 99,634
87 50.331 51.190 0.858 0.858 100.008
89 62.143 63.067 0.925 0.924 99,927
91 67.841 68.765 0.924 0.923 99.928
93 77.076 77.949 0.873 0.871 . 99.818
95 83.610 84.604 0.994 0.994 100.036
97 92.755 93.843 1.088 1.090 100.161
99 102.907 104.158 1.251 1.253 100.208
102 44,262 45.153 0.891 0.891 99.955
104 33.034 33.809 0.776 0.775 99.878
106 42.663 43.440 0.778 0.776 99.835
108 55.944 56.826 0.882 0.880 99.878

110 63.522 64.437 0.914 0.913 99.820




Table 4.3.2 continued

112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
145
147
149
151
153
155
157
159
165
167
169
171
173
175
177
179
186
188
190
192
194
196
198
200
208
210
212
214
216
218
220
229
231
233
235

69.646

77.930
85.518
91.868
104.643
39.542
33.332
44.281
52.498
58.526
67.527
75.498
79.045
81.265
89.832
38.362
44 .882
46.061
56.025
70.749
68.378
67.127
65.011
38.300
40.579
47.855
60.184
67.866
64.113
62.719
64.430
43.048
51.596
59.144
62.228
56.037
57.209
59.270
65.318
55.122
58.260
59.139
48.012
47.049
49.752
56.823
55.504
53.218
55.546
37.003

70.537
78.891
86.577
93.039
106.009
40.401
34.143
45.046
§3.329
59.389
63.410
76.477
80.149
82.434
91.166
39.116
45.626
46.804
56.826
71.663
69.490
68.334
66.196
39.039
41.250
48 .520
60.932
68.758
65.214
64.012
65.898
43.773
52.317
59.893
62.978
56.965
58.333
60.553
66.805
55.881
59.010
59.726
48.846
48.106
50.954
58.228
56.252
53.793
55.983
37.871

0.891
0.961
1.060
1.171
1.367
0.859
0.811
0.765
0.831
0.862
0.883
0.979
1.104
1.169
1.334
0.754
0.744
0.743
0.801

0.914

1.112
1.207
1.185
0.740
0.670
0.665
0.748
0.892
1.101
1.293
1.468
0.726
0.721
0.749
0.749
0.928
1.124
1.283
1.487
0.759
0.750
0.587
0.834
1.057
1.203
1.405
0.747
0.575
0.437
0.368

0.889
0.960
1.060
1.172
1.374
0.858
0.810
0.763
0.830
0.861
0.881
0.978
1.104
1.170
1.340
0.749
0.744
0.742
0.800
0.911
1.112
1.209
1.189
0.738
0.669
0.663
0.744
0.889
1.100
1.294
1.471
0.725
0.719
0.745
0.745
0.924
1.124
1.284
1.490
0.756
0.746
0.581
0.830
1.056
1.203
1.408
0.744
0.569
0.430
0.863

99.723
99.866
100.043
100.067
100.576
99.917
99.918
99.702
99.917
99.843
99.722
99.864
100.019
100.061
100.472
99.406
99.935
99.867
99.944
99.697
99.967
100.125
100.362
99.787
99.769
99.704
99.436
99.631
99.934
100.081
100.248
99.870
99.742
99.568
99.348
99.657
99.973
100.086
100.151
99.694
99.513
98.980
99.447
99.883
100.000
100.195
99.522
99.025
98.454
99.421

99



Table 4.3.2 continued

237
239
249
251
253
255
257
259
270
272
274
276
278
280
291
292
293
294
296
- 297

298 -

299
300
309
311
313
315
317
319
329
331
333
335
337
339
349
351
353
354
355
356
357
358
359
360
366
368
380
397
399

35.140
37.897
52.077
43 .867
56.294
32.700
23.383
23.267
45.287
61.326
47.757
32.009
27.041
34.813
53.166
67.683
67.215
60.173
53.350
53.724
55.290
57.632
65.729
58.271

. 67.683

81.478
82.704
90.044
100.980
56.294
67.215
82.051
79.509
90.039
101.657
42.011
60.173
78.037
67.361
62.299
61.299
62.680
64.853
67.503
75.326
56.141
37.003
49,342
29.770
27.894

36.218
39.123
52.764
49.239
56.509
33.318
24.298
24.329
45.655
61.258
47.886
32.264
27.324
35.190
53.065
67.463
67.053
60.055
53.241
53.624
55.228

- 57.626

65.812
58.413
67.463

. 81.173

82.424
89.857
101.057
56.509
67.053
81.674
79.143
89.689
101.295
42.430
60.055
77.663
66.997
61.961
60.986
62.383
64.565
67.225
75.037
57.173
37.871
49.141
29.560
27.717

1.078
1.226
0.687
0.372
0.215
0.618
0.915
1.062
0.368
-0.068
0.129
0.255
0.283
0.377
-0.101
-0 0220
-0.162
-0.118
"0. 109
-0.099
-0.062
-0.007
0.083
0.142
-0.220
-0.304
-0.280
-0.187
0.077
0.215
-0.162
-0.377
-0 0366
-0.350
-0.362
0.419
-0.118
-0 0374
-0.364
-0.338
-0.313
-0.297
-0.288
-0.279
-0.289
1.032
0.868
-0.201
-0.210
-0.177

1.077
1.226
0.683
0.365
0.208
0.608
0.907
1.056
0.360
-0.075
0.120
0.240
0.263
0.364
-0.109
-0.226
-0.167
-0.125
-0.118
-0.108
-0.071
-0.016
0.077
0.135
-0.226
-0.312
-0.285
-0.189
0.075
0.208
-0.167
-0.382
-0.369
-0.352
-0.364
0.410
-0.125
-0.379
-0.368
-0.342
-0.316
-0.300
-0.290
-0.281
-0.293
1.030
0.863
-0.205
-0.214
-0.182

99.867
99.998
99.347
98.032
96.745
98.390
99.142
99.478
97.893
109.851
93.134
94.039
93.002
96.534
108.029
102.722
103.331
106.060
107.688
108.923
114.797
241.315
93.336
94.890
102.722
102.463
101.642

101.419

97.485

96.745
103.331
101.415
100.925
100.411
100.572

97.833
106.060
101.275
101.176
101.065
100.931
100.804
100.717
100.738
101.558

99.846

99.421
102.234
102.002
102.481

100
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Table 4.3.2 continued

417 21.848 21.623 -0.225 -0.230 102.151
419 18.109 17.866 -0.243 = -0.248 101.974
438 14.556 14.247 -0.309 -0.313 101.186
440 14.939 14.640 -0.299 -0.302 100.982
460 12.189 11.934 -0.255 -0.255 100.106
480 8.471 8.315 -0.156 -0.154 99.114

Table 4.3.3 SDSA Results for Truss-Beam-Plate
Built-up Structure Using the
Domain Approach with Piece-wise
Linear Velocity, without Compensation

Element Von Mises Stress Actual Predict Ratio

Number oLD NEW Change Change %
81 49,128 50.043 0.915 0.777 84.918
83 40.429 41.289 0.860 0.684 79.535
85 34.279 34.881 0.602 0.468 77.741
87 50.331 51.190 0.858 0.673 78.438
89 62.143 63.067 0.925 0.706 76.324
91 67.841 68.765 0.924 0.647 70.022
93 77.076 77.949 0.873 0.549 62.671
95 83.610 84.604 0.994 0.607 61.066
97 92.755 93.843 1.088 0.679 62.408
99 102.907 104.158 1.251 0.807 64.508

With the sensitivity coefficients obtained in the previous step,
one can now apply a nonlinear programming method to find an improved
design. The linearization method [44] of iterative optimization is
chosen. Minimum cost (total mass) of the built-up structure, subject to
stress constraints on plate and beam elements and a displacement
constraint is considered. The initial design is chosen to be a uniform
plate (thickness = 0.1 inch) and uniform beam (height = 0.5 inch, depth
= 0.15 inch), with shape parameters by = by = 1.5 and by = by = 4.5.

The lower bounds on plate thickness, beam height, and beam depth are

0.05, 0.25, and 0.075, respectively. Beam stiffners are allowed to move



102

freely, without coalescence or passing each other. Upper bounds for
stress constraints are 400 psi for beam elements and 100 psi for plate
elements. Center point vertical displacement is fimited by 0.0006 inch
downward. Consequently, this problem has 292 design variables and 251
constraints, without including design bound constraints.

The cost function history achieved is plotted in Fig. 4.3.4. Due
to excessive computing coét (35,000 CPU second/iteration in a PRIME _
750), the algorithm is terminated after the 22nd iteration, after which

one may expect a series of small design changes that lead to an optimum.

Cost (Total Mass)
0.65 0.75

0.55

ke, RS | 3 L ) L] |

0 5 10 15 20
Iterations

0.45
[
!

Figure 4.3.4 Cost Function History
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The shape given in Fig. 4.3.5 is the 22nd improved design, with a
36% cost reduction. Maximum violation is reduced from 0.1140 to 0.0035,
and the norm of the direction vector is reduced from 0.1170 to 0.021.
The design process shows the following trend: Beam height changes

slightly, except in ng and 9%0’ where height increases considerably.

4 10

Beam depth generally decreases, except in 2, and Q. The beam

stiffners move inward (see Fig. 4.3.5.b), resulting in decreases in
plate thickness in patches ﬁ%, ni, Qg, and n?. The pliate elements in
the remaining patches are adjusted in thickness, to compensate for beam
movement. Plate elements on the free boundary tend to approach the

lower bound.

4.3.3 Discussion

The domain approach for shape design sensitivity analysis yields
excellent results given in Table 4.3.1. Accuracy problems arise,
however, in the same analysis result using the boundary approach in Ref.
22. The reasons for poor sensitivity are partly due to the nature of
the boundary approach, which requires accurate information along the
interfaces, and partly due to the design velocity field used in the
analysis. Test results of Chapter 3 and Table 4.3.3 demonstrate that
the regularity requirement of the design velocity field must be met.

Otherwise, singular behavior should be considered at the interfaces.
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Figure 4.3.5 Shape of Built-Up Structure at Twenty-Second Iteration




V. NUMERICAL EVALUATION OF THE
BOUNDARY-LAYER APPROACH

" 5.1 Introduction

105

As outlined in Section 2.3, the purpose of establishing a boundary-

layer within the domain is two fold:

(i) Direct control over the velocity field within the domain, and

(i) Reduce computing cost, without sacrificing accuracy of the domain
approach.

In this chapter, two examples are solved by the boundary-layer
approach. The first example is a simple interface problem, composed of
two plane elastic plates with different material properties. This
simple example shows the efficiency and reliability of the boundary-
layer approach, compared to the boundary approach.

The second example is a fillet. The idea of velocity element is
tested in conjunction with a B-spline boundary curve. Using B-spline
functions, design velocity along the outer bounding surface T (see
Section 2.3) is obtained. Design velocity within the boundary-layer is

then found using the velocity element idea.

5.2 A Plane Stress Interface Problem
For elliptic boundary-value problems, singularities may occur when
the boundary or the data is not smooth. The latter type of singularity

may arise in interface problems such as elasticity problems with
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composite materials. Shape design sensitivity analyses are performed on
examples of this kind using the boundary-layer approach and results are
compared to the domain and boundary approaches to show good performance
of the boundary-layer method. This problem was studied by Yang and Choi

{23], using the boundary approach.

5.2.1 System Discription and Formulation

A plane elasticity problem that is composed of two plane elastic
plate components with different material properties is chosen to be
analyzed.- The major concerns are: (i) To perform shape design
sensitivity analysis with Eo/Eq = 7.65, using the boundary-layer
approach, and to show effectivness of the boundary-layer approach by
comparing results obtained by boundary and domain approaches. Young's
modulus is then changed to E»/E; = 500, to evaluate validity of the
boundary-layer approach under a severe condition. (ii) To see the
effect of mesh refinement on singular behavior, using the boundary-layer
approach. .

The geometry of the problem studied is shown in Fig. 5.2.1. The
domain is the union of sub-domains 2, and Q) with material properties

are given in Table 5.2.1.

Table 5.2.1 Material Properties of Interface Problem

1 E‘i vi

2.3 GPa 0.3

2, 17.6 GPa 0.3
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Figure 5.2.1 Geometry of Interface Problem (Length in [cm])

The space of kinematically admissible displacemgh’t field is

Z={z = (2, 2p) € (W(a')]? x [#(a))]%

1.1 _ 1 _ .2
zl-zz-O,XCI‘O,zi = 2z,

1si=13 2, X€‘Y}

where I‘o is the fixed end and vy is the interface.

Applying the design component idea, one obtains, using Egs. 2.2.20,

2.2.36, and 2.2.37,

a(z, ) = [ {ff I [
m Q1

m m_\m
: kZ” Ciike (vz,-V,) de |
m ’ ?

+ Hﬂmigj [°1j(zm) (VZT‘V?)] dg

-1 (1 a].j(zm) € @) (vev™) da} (5.2.1)
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A stress constraint of the following type is considered:

v Il e(a(z)) My de | (5.2.2)
Qq

where Mp is a characteristic function on test region aP c Qq and ¢ is

the von Mises yield criterion,

2 Y

2 2
= (0,7 + 050" + 30, = 0y 0]

The variation of the constraint functional of Eq. 5.2.2 is, using Egs.

" 2.2.37, 2.2.41, the last term of Eq. 2.2.45 and Eq. 5.2.1,

2
v o= mzl {f 1Xj [kZ Tike (ZeeVy) e5,0M] d

gm ] ’
SRR CHCILE

15J

- Hn [I ;") ;M) (V) da}

9
54’ (2) ¢y (720-V))} M ] de

] p]

-H [Z {1
%

1,0 kst

+ff o (vVI)M da-[f ¢M da[[ (vevd)M da (5.2.3)
P g P P

Q
% q q

The plate of Fig. 5.2.1 is discretized into a 32-element, 121-node
finite element model, in which 8-node isoparametric finite elements are

used.
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5.2.2 SDSA of a Interface Problem
Using Boundary-layer Approach

For a body of given geometry there are a large number of possible
boundary-layers some of which are better than others, from the viewpoint
of accuracy and economy. It is difficult to estmate the size and
location of the best boundary-layers in advance. They can be determined
by analyzing the state and/or applying a test shape design sensitivity
analysis.

The boundary-layer is chosen to include elements 13 thru 20 in Fig.
5.2.2. The design variable b for this case is distance between node 51
and node 65 in Fig. 5.2.2. Consequently, regions outside the boundary
layer remain unchanged. Numerical results with a 3% design change are
shown in Table 5.2.2 for the boundary-layer approach and in Table 5.2.3
for the boundary approach. Due to symmetry, the lower half of shape
degign sensitivity analysis results are shown. One can see from these
results that the boundary-layer approach gives excellent results,
whereas accuracy of the boundary approach is not acceptable. The poor

design sensitivity obtained with the boundary approach is caused by

S 23 37 51 65 79 93 107 121

(4) | (8) [(12) | (18)] (20)| (24) | (28)] (32)

(3) | (7) [n) | Qs)y (19)| (23) (27)} (31)

‘o | @ lao | aa] aal @2 @) o

@@ anl an| @] @] @)

Figure 5.2.2 32-Element Coarse Model



110

unsatisfactory finite element analysis on the interface, due to an
abrupt change in material properties, since the boundary approach
requires integration over the interface. Note thét, for the boundary
approach, the best possible techniques, such as projection from the
Gauss points to the boundary [23], are used to evaluate data on the
interface. One can avoid data evaluation at the interface by using the
boundary-layer (also domain) approach and obtain accurate sensitivity
results. This can be of great advantage for complex problems with
singular behavior along interfaces. In Table 5.2.4, numerical results
with a 3% design change for the domain apporach are given. The design
yariable for thi§ case is the distance between node 9 and node 65 in
Fig. 5.2.2. Note that design variables are not the same for boundary-
layer and domain approaches. Notice that thickening the boundary-layer

in this problem does not significantly improve results.

Table 5.2.2 SDSA Result of the Coarse Model
with 4 - 4 Elements in Each
Boundary-Layer (E,/E; = 7.65)

Elt Von Mises Stress Actual Predict Ratio x 100
# LD NEW Change Change %
1 393.013040 ' 393.079670 0.066630 0.067700 101.608
2 364.378670 364.295420 -0.083250 -0.084120 101.047
5 388.075140 388.203440 0.128300 0.129160 100.674
6 402.269030 402.196330 -0.072700 -0.071260 98.027
9 386.434610 386.476870 0.042270 0.041030 97.078
10 407.146120 407.465710 0.319600 0.329540 103.113
13 388.596340 388.703000 0.106660 0.108340 101.578
14 379.042760 379.524870 0.482100 0.485900 100.787
17 441.685240 442.170080 0.484840 0.476150 98.207
18 424.058200 425.317170 1.258970 1.236360 98,204
21 424.190150 424.442700 0.252540 0.256800 101.685
22 378.854330 378.994590 0.140250 0.119020 84.861
25 407.715280 407.991050 0.275770 0.272480 98.807
26 387.873040 387.597780 -0.275260 -0.275400 100.049




Table 5.2.2 continued

29 400.610140 -400.625710
30 394.617050 394.454610

0.015570
-0.162440

0.015430

-0.161040

99.059
99.138

Table 5.2.3 SDSA Result of the Coarse Model
Using Boundary Approach (E»/E; = 7.65)

von Mises Stress

oLD

NEW

393.01304
364.37867
388.07514
402.26903
386.43461
407.14612
388.59634
379.04276
441.68524
424.05820
424.19015
378.85433
407.71528
387.87304
400.61014
394.61705

393.17922
364.76664
388.36215
402.83406
386.84976
407.438249
388.95414
379.25247
442,25032
425,22910
424.70840
378.97497
408.23368
387.32342
400.60112
394.00702

Actual
Change

0.16618
0.38796
0.28701
0.56503
0.41515
0.33637
0.35780
0.20971
0.56507
1.17089
0.51825
0.12064
0.51840
-0.54962
-0.00903
-0.61003

-13.85905
-13.63066

Predict
Change

0.20403
0.67218
0.56684
0.42080
-0.08520
0.14159
-0.53089
-1.90134

-0.21408
0.76770
0.49878

-0.48837
0.01423

-0.57794

111

Ratio x 100

122.77621
173.25764
197.49962
74.47325
-20.52248
42.09417
-148.37419
-906.64762

-2452.60502
-1164.12453

-41.30779
636.37320
96.21538
88.85661
-157.65640
94.73960

Table 5.2.4 SDSA Result of the Coarse Model
Using Domain Approach (Ep/E; = 7.65)

von Mises Stress

OLD

NEW

Actual
Change

Predict
Change

Ratio x 100

%

393.013040
364.378670
388.075140
402.269030
386.434610
407.146120
388.596340
379.042760
441.685240
424.058200
424.190150
378.854330
407.715280
387.873040

393.179220
364.766640
388.362150
402.834060
386.849760
407.482490
308.954140
379.252470
442.250320
425.229100
424.708400
378.974970
408.233680

387.323420

0.166180
0.387960
0.287010
0.565030
0.415150
0.336370
0.357800
0.209710
0.565070
1.170890
0.518250
0.120640
0.518400
-0.549620

0.179540
0.378400
0.286710
0.596340
0.417480
0.368570
0.375490
0.201590
0.570690
1.128710
0.539190
0.063960
0.517100
-0.560830

108.036
97.535
99.898

105.540

100.562

109.573

104.940
96.125

100.994
96.397

104.042
53.017
99.749

102.040
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Table 5.2.4 continued

-0.009030
-0.610030

-400.601120
394.007020

-0.002980
- =0.585290

33.025
95.945

29 400.610140
30 394.617050

Next, to test validity of the boundary-layer approach, Young's
modulus is changed to E; = 0.20x10° and Er = 1.00x108 for 2 and 2,
respectively. In other words, the ratio between Ej and E; is raised to
500, from 7.65, to check a more severe condition. Design sensitivity
results are given in Table 5.2.5. Accuracy of design sensitivity is
still acceptable. For elements 9 and 22, accuracy is marginal.
However, the magnitude of actual change for these elements is small, so
finite differences may not be correct. Numerical results obtained by
the boundary approach are given in Table 5.2.6, which indicates that

worse results may arise if the ratio Eo/E; increases.

Table 5.2.5 SDSA Result of the Coarse Model
with 4 - 4 Elements in Each
Boundary-Layer (E,/E; = 500 )

Elt Von Mises Stress Actual Predict Ratio x 100
# OLD NEW Change Change %
1 392.305570 392.393590 0.088020 0.089260 101.402
2 365.243520 365.143840 -0.099670 -0.100470 100,798
5 386.631130 386.771990 0.140860 0.141380 100.367
6 402.936370 402.898860 -0.037520 -0.034770 92.675
9 386.580370 386.563300 -0.017060 -0.020160 118.181
10 403.053380 403.582140 0.528760 0.541500 102.410
13 392.165070 392.154620 -0.010460 -0.010330 98.844
14 365.554090 366.176380 0.622290 0.625520 100.518
17 477.041220 478.185420 1.144200 1.119430 97.835
18 440.116980 442.560250 2.443270 2.392580 97.925
21 442.638980 443.092150 0.453170 0.464520 102.503
22 362.566640 362.675590 0.108950 0.071170 65.322
25 412.834660 413.321420 0.486760 - 0.480000 98.611
26 379.905050 379.413550 -0.491490 -0.490330 99.763




Table 5.2.5 continued

29 401.088180 .401.118770
30 391.196160

390.922130

0.030590
-0.274030

0.030310
-0.271580
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99.078
99.106

Table 5.2.6 SDSA Result of the Course Model
Using Boundary Approach (E,/E; = 500)

von Mises Stress

oLD

NEW

Actual
Change

Predict
Change

Ratio x 100

392.30557
365.24352
386.63113
402.93637
386.58037
403.05338
392.16507
365.55409
477.04122
440.11698
552.63898
362.56664
412.83466
379.90505
401.08818
391.19616

392.54946
365.56549
386.95951
403.56356
386.91161
403.67621
392.41381
365.87331
478.28537
442,55272
443.60941
362.60856
413.76383
378.94170
401.08822
390.18924

5.2.3 Effect of Mesh Refinement

0.24389
0.32197
0.32838
0.62719
0.33124
0.62283
0.24874
0.31923
1.24415
2.43574
0.97043
0.04192
0.92917
-0.96335
0.00004
-1.00692

0.26360
0.61127
0.60857
0.41597
-0.46177
0.25995
-0.97467
-1.70688
-999.01813
-995.38437
55.21655
65.58310
-1.39687
16.78425
1.93765
-3.09688

108.07921
189.85235
185.32250
66.32254
-139.40854
41.73644
-391.85058
-534.69096
-80297.17435
~408565.88759
5689.89566
156445.07974
-150.33495
-1742.28044
53656.13681
307.55910

As stated earlier, there exists a singularity along the interface,

due to an abrupt change of material properties accross the interface y.

It is known that mesh refinement is an effective way of dealing with

singularities. The plate is discretized into a 128-e1ement, 433-node

refined finite element model, which has 832 active degrees-of-freedom.

The type of finite element is not changed. Young's modulus is 0.20x10°

-and 1.00x108 for Ql‘and 2, respectively, which gives Ez/El = 500.

As a test of the refined model, 16 elements are assigned to the

boundary-layer, which means that the thickness of the boundary-layer is



half of that for the coarse model (4 elements in Q

1
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.and 4 elements

in 92). Shape design sensitivity results are given in Table 5.2.7, due

to a 3% change in design variables.

Results given in Table 5.2.7 show

" very good agreement between predicted change %' and actual change

Ay, except in elements 27 and 74.

However, note that the actual change

for these elements is smaller than for others and may not accurate.

Table 5.2.7 SDSA Result of the Refined Model
with 8 - 8 Elements in Each

Boundary-Layer (E,/E; = 500)

Von Mises Stress

oLD

NEW

Actual
Change

Predict
Change

Ratio x 100

422.968950
370.248170
353.546740
349.312770
391.927430
390.900270
382.152430
377.526930
376.610900
396.657330
399.654010
398.967700
373.940010
396.719880
406.807520
409.659310
373.926350
396.718570
406.839680
409.713020
376.556490
396.653040
399.763400
399.139530
391.670150
390.953600
382.375090
377.826960
422.383440
370.378660
353.887750

423.030780
370.256580
353.513190
349.256790
392.016470
390.912700
382.112240
377.461990
376.723970
396.671200
399.620250
398.918750
374.064670
396.732840
406.809000
409.676590
374.018230
396.728700
406.937690
409.882140
376.497720
396.687610
400.072850
399.561830
391.060950
391.272470
383.034650
378.521860
421.874110
370.824220
354.289930

0.061830
0.008400
-0.033550
-0.055990

~ 0.089030

0.012430
-0.040190
-0.064940

0.113070

0.013870
-0.033760
-0.048960

0.124650

0.012960

0.001480

0.017270

0.091880

0.010130

0.098010

0.169120
-0.058780

0.034570

0.309460

0.422300
-0.609200

0.318870

0.659560

0.694910
-0.509330

0.445560

0.402180

0.062350
0.008460
-0.033760
-0.056320
0.089590
0.012510
-0.040310
-0.065110
0.113540
0.013920
-0.033610
-0.048660
0.124760
0.012980
0.002230
0.018530
0.090960
0.010260
0.099980
0.171800
-0.062680
0.036180
0.313430
0.426120
-0.619550
0.326640
0.664520
0.697740
-0.512000
0.448860
0.402300

100.846
100.716
100.631
100.588
100.620
100.601
100.300
100.262
100.416
100.394

99.559

99.384
100.083
100.143
151.212
107.256

99.002
101.351
102.016
101.587
106.633
104.651
101.284
100.906
101.699
102.436
100.753
100.408
100.524
100.742
100.029




Table 5.2.7 continued

60

349.700820
541.075820
477.244240
467.075570
468.364240
512.541210
393.697000
389.864860
394.797640
477.399940
404.565300
370.947110
363.098310
451.214570
406.665410
374.694670
360.740810
429.574850
405.132400
382.155770
369.595660
414.632090
402.520380
388.544580
380.039180
405.031330
399.987550
392.712790
388.068180
400.394620
397.935420
394.037150
391.373530

5.2.4 Discussion

350.069920
542.298610
479.974620
468.562640
469.681620
512.828520
393.893700
391.207420
396.408680
478 .347540
404.307630
371.020010
363.514950
451.926190
406.678550
374.499580
360.598020
430.053980
405.197000
381.964630
369.321610
414.893470
402.565190
388.401100
379.800650
405.130580
399.990320
392.605950
387.898250
400.402900
397.894640
393.930650
391.225420

0.369100
1.222780
2.730380
1.487070
1.317370
0.287310
0.196690
1.342560
1.611030
0.947600
-0.257670
0.072890
0.416640
0.711620
0.013140
-0.195090
-0.142790
0.479140
0.064600
-0.191140
-0.274060
0.261380
0.044810
-0.143480
-0.238530
0.099250
0.002770
-0.106830
-0.169930
0.008280
-0.040780
-0.106510
-0.148110

0.369160
'1.189130
2.678890
1.475510
1.311190
0.309710
0.157320
1.314160
1.590090
0.944510
-0.252210
0.063110
0.403200
0.709130
0.014770
-0.196570
-0.147740
0.476340
0.064790
-0.190990
-0.275070
0.259630
0.044530
-0.143100
-0.238190
0.098480
0.002710
-0.106370
-0.169270
0.008210
-0.040480
-0.105830
-0.147240

100.014
97.248
98.114
99.223
99.530

107.797
79.984
97.885
98.700
99.674
97.882
86.574
96.774
99.650

112.373

100.760

103.463
99.417

100.304
99.922

100.371
99.332
99.434
99.738
99.856
99.227
98.007
99.568
99.612
99.169
99.267
99.365
99.411

The results given in this section clearly show that the boundary

approach may have considerble difficulties in handling problems with

singular characteristics.

deteriorates in the vicinity of a singularity.

On the other hand, the

boundary-layer approach can give acceptable design sensitivity results

throughout the domain.
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The accuracy of the boundary approach rapidly



For this specific problem, 56 per cent of cpu time is saved by
using the boundary-layer approach, instead of the domain approach,
without sacrificing accuracy of design sensitivity.

Mesh refinement is one of the techniques to deal with singular
problems. It is confirmed that one can get a similar result with

smaller boundary-layer by introducing a refined model.

5.3 Fillet Problem
5.3.1 Introduction

Finding the best shape of a fillet in a tension member has
attracted many engineers with different methods. Quite recently, Yang
and Cﬁoi [23] studied the problem using the boundary approach and smoo
boundary representation by polynomial splines.

In this section, shape design sensitivity analysis of a fillet is
performed with the boundary-layer approach of SDSA and B-spline bounda
repesentation. The velocity element idea is also used to find the
velocity and derivative of velocity in the boundary-layer.

Numerous tests show that the boundary approach to SDSA may be
adequate for component design (without singularity) but may not be
satisfactory for built-up structures. The boundary approach to SDSA
yields excellent shape design sensitivity analysis results for this
fillet problem, using 8-noded isoparametric finite elements, numerical
integration based on Gauss point data, and polynomial spline boundary
representation [23]. The major concern here is to test validity of
velocity approximation by velocity element and boundary approximation

B-spline functions, in the boundary-layer approach to SDSA.
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Two designs (shapes) are chosen to be analyzed:
(i) The initial design with straight boundary.
(ii) The near optimum design of Ref. 23.
Shape design sensitivity analysis results are then compared to results

obtained with the boundary approach.

5.3.2 System Discription and Formulation

Consider first a fillet with straight boundary, shown in Fig.
5.3.1. The design for this problem is the shape of varying boundary
between points A and B, without moving these two points. Due to
symmetry, only the upper half of a fillet is analyzed. Dimensions of
the sfruqture and applied loads are given in Fig. 5.3.1. The
segment T4 is the center-line of the fillet and Ty is the uniformly

loaded edge.

N A(9,9)
N
N

\ B(16.5,4.5) (20,4.5)
NG T

B r .
%O 2 x] s 2 100 Tb/in

(20,0)

Figure 5.3.1 Fillet with Straight Boundary

Next, a design shown in Fig. 5.3.2 which is near the optimum of

Ref. 23 is chosen to be analyzed. Notice the almost vertical slope near
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point A and horizontal slope near point B. This shape, especially near

point A, causes distortion in the finite element mesh for analysis.

A

I'-l 8
Tq
r
ry 2
Figure 5.3.2 Fillet at Optimum

Kinematical boundary conditions are
z =0 for xc I‘4
z, = 0 for x € Ty (5.3.1)

where Z; and z, denote displacements in X1 and xp directions,
respectively. The traction boundary condition is

2
T. = ¥ °'j(z) n, for x €T, (5.3.2)

i j=1 i J
where G is the (j)-th component of the outward normal to Ty and Ty and
T2 are x; and xp components of surface traction. The space of

kinematically admissible displacements is defined as




Z = {z =(z;,z,) C[Hl(sz)]zz 2y =0, x €Ty and z, = 0, x €Iy}
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(5.3.3)
The variational form of the governing equation is
a(z, z) = (2), forall z €12 (5.3.4)
where
alz, 7) =[] [I o, (2} &, (2)] da (5.3.5)
1(z) = [ [} T 'z'i] dr (5.3.6)
r, i _

Stress constraint functionals of the following type are considered:

v=[[ ¢ (a(2)) M, d2 (5.3.7)
Q

where M_ is a characteristic function and ¢ is von Mises yield stress.

P
Following the procedure of Chapter 2, one obtains the shape design

sensitivity formula

=[] 1 [kZ cijkz (Vzk-Vz) €3 (1)] da

Qi,j L

+ ”ni?j [Gij (z) (va;+V,)] da

- .. (Z) g; (A)] (VeV) do
I, LL ey @) ey O]
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9
- HQ [i ?j {kglv;f’j- (2) Cypq (T72V,)H] M, da
+ [ ¢ (VeV) M_ da
a p
- ff oM da [[ (veV) M_de (5.3.8)
a P Q P

where A is the solution of the adjoint equation of Eq. 2.2.40, which can

be rewritten for this problem as

dq, for al1 X €12

a(x, X) = HQ [1§j {ai;". (z) o5 ()} M]

J

Notice that only first derivatives of the velocity field appear in

Eq. 5.3.8, requiring only a c0 design velocity field (see Chapter 3).

5.3.3 Numerical Test

The first step in using the boundary-layer approach to SDSA is to
determine the best possible size and location of boundary-layer in the
domain. For this purpose, one may discretize the.who1e domain into
relatively fine mesh, for finite element analysis. Based on this
analysis result, one can construct suitable size for the boundary-layer
after isolating critical regions by measuring strain energy density [45]
near the varied boundary. The boundary-layer chosen (27% of the total
area) is shown in Fig. 5.3.3 with its (s,t) boundary-layer coordinate

system. In Fig. 5.3.4, the finite element model with 319 elements and
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1994 active degrees-of-freedom is shown. The element type used is an 8-

noded isoparametric element.

X1
Figure 5.3.3 Boundary-lLayer Q, and
Boundary-Layer Cgordinate System (s,t)

A
{ f ; %//;F Boundary-Layer
Pl I/ 79
INENENN
[ 1] / B
NENR) TTTT]
ERES SNNEEEEE
~ 117
o
ARSRSSeSSsma

Figure 5.3.4 Finite Element Mesh for Fillet
with Straight Boundary
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Figure 5.3.5 Finite Element Mesh for Fillet at Optimum

Velocity and derivative of vé]ocity are evaluated using the
velocity element idea explained in Section 2.3. Normally, a two
dimensional velocity has two components, v and Vt the in s- and t-
directions, respectively. However, the s-component of velocity is zero,

since the domain is allowed to vary only in the t-direction. Note
t=
s

velocity interpolation, velocity along the inner bounding surface y and

that Vv avt/as is not necessarily zero in this velocity field. For
velocity along the outer bounding surface I must be specified. Velocity
along y is zero, since y is not allowed to move. Velocity along T can
be specified by perturbing the boundary I and Vg and VE can be found
using the isoparametric mapping given in Section 2.3. To evaluate the
predicted change ¢', calculation is carried out over the boundary-

layer QB’ due to zero velocity derivative in Q 2.
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As noted previously, the ratio between predicted change ¢' and
actual change Ay times 100 is used as an accuracy measure of shape
design sensitivity. The actual change Ay is defiﬁed as
Ay = w(bo+6b) = w(bo), where b0 is current design and &b is design
change. Note that this accuracy measure may not give correct
information when the actual change Ay is very small, compared
to w(bo), because the difference Ay may lose precision, due to the
subtraction ¢(b0+5b) - w(bo).

Shape design sensitivity analysis results, with a 0.1% design
perturbation, for a fillet with straight boundary are given in Table
5.3.1. For conéenience, the same results are summarized in Fig. 5.3.6
graphfcal]y. One can see from Table 5.3.1 that very good accuracy can
be obtained with the bounday-layer and velocity element approaches,
except for elements 32, 105, 126, 133, 248, 256, 296, 301, 308 and
309. However, the magnitude pf actual changes in the above elements is
smaller than in others, so Ay may lose precision. In Table 5.3.2, SDSA
results obtained with the boundary approach [23] are listed and
summarized graphically in Fig. 5.3.7. The boundary approach gives good
design sensitivity results for this problem. Elements 28, 31, 33, 35,
37, 51, 52, 58, 73 thru 75, 79, and 84 show pdorer accuracy than others,
but this may be attributed to the smaller magnitudes of their actual
changes.

In Tables 5.3.3 and 5.3.4, shape design sensitivity analysis
results for a fillet at at near optimum design, which are obtained with
0.1% design perturbation by the boundary-layer and boundary approaches,

respectively, are given. For comparison, summaries of these results are
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shown graphically in Figs. 5.3.8 and 5.3.9. Note that the shapes of the
boundary are not exactly the same, partly because of differences in the
design space and partly because of the different Spproximation methods
used.

One can observe that better agreement with finite difference
results is obtained with the boundary-layer approach than the boundary
approach. However, one should consider the difference fn gridding
before interpreting results. Some elements (elements 9, 38, 237 thru
239, and 247 for the boundary-layer approach, and elements 25, 80, 84,
93, 98, 103 for boundary approach) show below marginal design
sensitivitfes. However, for e]emgnt§‘9, 38, and 238 for the boundary-
layer‘approach and element 25 for the boundary approach, the actual
changes are smaller than for others. Poor sensitivities of elements
237, 239, and 247 in the boundary-layer approach and element 80 in the
boundary approach may be caused by bad element aspect ratio (ratio

between two adjcent sides for quadrilateral element).
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301, 308

Figure 5.3.6 Summary of SDSA Result by Boundary-Layer
Approach at Design with Straight Boundary

73,74,75

Figure 5.3.7 Summary of SDSA Result by Boundary
Approach at Design with Straight Boundary
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Figure 5.3.8 Summary of SDSA Result by Boundary-lLayer
Approach at Optimum of Ref. 23
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Figure 5.3.9 Summary of SDSA Result by Boundary
Approach at Optimum of Ref. 23
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Table 5.3.1 SDSA Result of Fillet

von Mises Stress

oLD

NEW

with Straight Boundary

127

Using Boundary-layer Approach

Actual
Change

Predict
Change

Ratio x 100

460.225940
454.708990
443.380220
425.632450
400.525300
366.699190
322.490570
265.627070
196.945070
460.796120
456.924230
449.108250
437.239910
421.261880
401.385180
378.450110
354.876240

- 332.326810

469.322020
467.321060
463.411370
457.817900
450.980340
443.666440
436.996520
431.888270
426.352600
483.728570
483.447360
483.035810
482.808910
483.255410
484.993980
488.538740
493.631890
498.060230
501.822780
502.904160
505.197510
508.951300
514.489690
522.102190
531.804730
542.944160
553.874000

460.350740
454.843410
443,534470
425.817950
400.755870
366.990980
322.866690
266.100090
197.554680
460.901200
457.034510
449,228700
437.374780
421.413600
401.552700
378.623250
3565.040820
332.461760
469.395050
467.394880
463.486040
457.891860
451.049140
443.721520
437.024870
431.878960
426.313710
483.762420
433.478810
483.061790
482.824990
483.255370
434.970010
488.483690
493.545980
497.961960
501.815170
502.892550
505.177560
508.918140
514.438100
522.027550
531.705470
542.825700
553.752130

0.124800
0.134420
0.154250
0.185500
0.230570
0.291790
0.376120
0.473020
0.609620
0.105080
0.110290
0.120450
0.134870
0.151720
0.167530
0.173140
0.164580
0.134950
0.073030
0.073820
0.074680
0.073960
0.068800
0.055080
0.028350
-0.009310
-0.038880
0.033850
0.031450
0.025970
0.016080
-0.000040
-0.023970
-0.055050
-0.085910
-0.098270
-0.007610
-0.011610
-0.019950
-0.033160
-0.051600
-0.074640
-0.099260
-0.118460
-0.121870

0.125450
0.135130
0.155090
0.186540
0.231840
0.293360
0.377560
0.474630
0.608590
0.105610
0.110860
0.121080
0.135600
0.152600
0.168660
0.175050
0.168400
0.144450
0.073370
0.074170
0.075030
0.074320
0.069210
0.055630
0.029310
-0.007960
-0.039260
0.033970
0.031540
0.026020
0.016070
-0.000140
-0.024160
-0.055420
-0.086930
-0.101230
-0.007720
-0.011760
-0.020180
-0.033510
-0.052130
-0.075450
-0.100540
-0.120540
-0.125280

100.525
100.534
100.546
100.560
100.550
100.540
100.384
100.341

99.832
100.513
100.516
100.525
100.539
100.582
100.677
101.105
102.320
107.039
100.477
100.472
100.470
100.488
100.593
101.006
103.391

85.550
100.973
100.351
100.306
100.195

99.895
373.135
100.806
100.670
101.188
103.012
101.494
101.296
101.138
101.055
101.034
101.089
101.286
101.763
102.790



Table 5.3.1 continued

46
47

521.472370
523.506730
527.652710
534.040910
542.798360
553.943880
567.227450
581.956790
596.983620
540.743510
543.364530
548.630270
556.564430
567.141110
580.209020
595.401290
612.073960
629.366870
557.989290
560.913630
566.746520
575.437510
586.865110
600.787730
616.795760
634.293440
652.554930
571.735950
574.841290
581.010830
590.147510
602.071270
616.485820
632.950610
650.876510
669.566560
686.719050
702.052950
716.765290
730.566360
743.108560
753.958250
762.602790
768 .565320
771.680660
772.530720
772.860930
775.499150
581.172890
584.415920

521.424990

523.455090
527.592570
533.968220
$42.709800
553.837860
567.105810
581.826650
596.857520
540.660890
543.278230
548.536880
556.461190
567.026510
580.083640
595.268820
611.941830
629.245580
557.877730
560.799310
566.627090
575.311460
586.732360
600.650250
616.658100
634.162950
652.440950
571.602880
574.706320

580.872520

590.005360
601.926250
616.340830
632.810840
650.749390
669.461000
686.639790
702.001990
716.745940
730.579480
743.152900
754.028840
762.689640
768 .652000
771.744680
772.547320
772.813070
775.383700
581.025810
584.267550

-0.047380
-0.051640
-0.060140
-0.072690
-0.088560
-0,106020
-0.121640
-0.130140
-0.126090
-0.082620
-0.086300
-0,093390
-0.103240
~0.114600
-0.125380
-0.132480
-0.132130
-0.121280
-0.111560
-0,114320
-0.119430
-0.126050
-0.132750
-0.137490
-0.137660
-0.130490
-0,113980
-0.133070
-0.134970
-0.138310
-0.142150
-0.145020
-0.144990
-0.139770
-0.127130
-0.105560
-0.079260
-0.050950
-0.019360

0.013130

0.044340

0.070590

0.086850

0.086690

0.064020

0.016600
-0.047860
~0.115450
-0.147080
-0.148360

-0.047700
-0.052000
-0.060590
-0.073270
-0.089370
-0.107170
-0.123310
-0.132520
-0.129130
-0.083100
-0.086820
-0.093980
-0.103950
-0.115480
-0.126540
-0.134050
-0.134320
-0.124070
-0.112150
-0.114930
-0.120080
-0.126760
-0.133550
-0.138410
-0.138750
-0,131840
-0.115740
-0.133720
-0.135630
-0.138970
-0.142810
-0,145670
-0.145580
-0.140240
-0.127270
-0.105120
-0.076340
-0.050740
-0.016150

0.017560

0.049570

0.076210

0.092390

0.091620

0.067700

0.018010
-0.040690
-0.115010
-0.147760
-0.149030

100.676
100.698
100.741
100.807
100.910
101.079
101.368
101.826
102.408
100.583
100.597
100.628
100.681
100.771
100.926
101.191
101.658
102.298
100.529
100.533
100.545
100.566
100.604
100.673
100.793
101.040
101.546
100.489
100.485
100.477
100.465
100.445
100.408
100.335
100.116

99.584

96.309

99.576

83.454
133.800
111.805
107.972
106.380
105.687
105.746
108.537

85.016

99.613
100.461
100.451
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Table 5.3.1 continued

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

590.844670
600.332060
612.658950
627.488410
644.346030
662.618950
681.584770
698.166420
712.085750
725.256790
737.357500
748.039730
756.930640
763.661810
767.983580
769.988690
770.420260
770.942640
774.042640
586.033940
589.337690
595.880190
605.520130
618.020110
633.024260
650.041630
668 .444960
687.490560
703.736710
716.921560
729.301040
740.540960
750.298990
758.235280
764.055070
767.616050
769.123210
769.384080
770.011210
773.332760
1448 .297520
1268.1844380
1130.540300
1068.909820
1030.511320
1009.857070
1000.660140
999.751440
1092,378200
1141,341490

590.694240

600.179780 .

612.506530
627.339430
644.206220
662.495970
681.487530
698.098 360
712.047100
725.250100
737.383230
748.095420
757.009990
763.753610
768.071160
770.050920
770.435450
770.895350
773.930200
585.879870
589.182680
595.723810
605.362960
617.864230
632.873600
649.902200
668.324440
687.397840
703.674550
716.889270
729.300820
740.572820
750.359950
758.318450
764.148790
767.703700
769.184410
769.398430
769.964370
773.221910
1449,233560
1268.543660
1130.711710
1068.990310
1030.543650
1009.864820
1000.658720
999.750850
1092.501350
1141.651140

-0.150430
-0.152280
-0.152430
-0.148980
-0.139810
-0.122980
-0.097240
-0.068070
-0.038650
-0.006690
0.025730
0.055690
0.079350
0.091800
0.087580
0.062230
0.015180
-0.047290
-0.112440
-0.154070
-0.155010
-0.156380
-0.157170
-0.155880
-0.150660
-0.139480
-0.120520
-0.092720
-0.062170
-0.032290
-0.000220
0.031870
0.060960
0.083160
0.093720
0.087650
0.061200
0.014350
-0.046840
-0.110850
0.936040
0.359180
0.171400
0.080490
0.032320
0.007740
-0.001420
-0.000590
0.123150
0.309650

-0.151070
-0.152870
-0.152920
-0.149280
-0.139790
-0.122400
-0.095710
-0.066810
-0.036220
-0.003530
0.029630
0.060250
0.084210
0.096460
0.091630
0.064890
0.017600

-0.042120 -
"=0.109650

-0.154760
-0.155680
-0.157010
-0.157720
-0.156280
-0.150810
-0.139240
-0.119810
-0.091610
-0.060420
-0.029590
0.003430
0.036040
0.065380
0.087640
0.097940
0.091250
0.064710
0.019870
-0.044700
~-0.110090
0.917880
0.366160
0.171080
0.080890
0.032360
0.007790
-0.001400
-0.000590
0.126220
0.301950

100.428
100.389
100.321
100.203
99.987
99.529
98.426
98.158
93.720
52.707
115.171
108.173
106.126
105.076
104.615
104.266
115.918
89.074
97.522
100.446
100.433
100.402
100.347
100.253
100.097
99.832
99.406
98.805
97.187
91.630
-1612.521
113.102
107.240
105.387
104.501
104.108
105.725
138.484
95.419
99.317
98.060
101.942
99.814
100.494
100.122
100.636
98.583
99.354
102.492
97.513

129
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146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

1116.366540
1070.450880
1039.013640
1017.870040
1005.330910
1000.952770
944.428530
1016.872820
1047.154970
1040.762720
1026.143840
1012.201320
1001.951340
998.551420
877.729960
930.708770
976.693980
997.395630
1001.185310
998.165730
993.803710
993.120980
838.605360
878.283650
922.658450
954.996180
972.785140
980.678690
983.469050
985.818590
814.601880
845.254100
884.327910
920.186950
946.544030
963.335200
972.897530
977.974080
799.235260
824.044430
858.174280
894.063380
925.067210
948.303040
963.451980
970.750140
789.360520
810.413040
840.834380
875.712910

1116.559930
1070.559520
1039.069870
1017.894610
1005.338100
1000.954730
944.227510
1016.928380
1047.262080
1040.842750
1026.191470
1012.223240
1001.956380
998.551320
877.445410
930.588760
976.682190
997.414200
1001.201330
998.171100
993.799250
993.114430
838.330050
878.086450
922.555240
954.948440
972.760140
980.660200
983.451060
985.802660
814.357350
845.033510
884.169940
920.085500
946.479370
963.291460
972.864850
977.947770
799.022610
823.824910
857.988980
893.924960
924.970220
948.236740
963.405710
970.714190
789.174080
810.202820
840.637890
875.551790

0.193390

0.108640

0.056230

0.024570

0.007190

0.001960
-0.201020

0.055560

0.107120

0.080030

0.047640

0.021920

0.005040
-0.000100
-0.284540
-0.120010
-0.011790

0.018570

0.016010

0.005370
-0.004450
-0.006540
-0.275310
-0.197200
-0.103210
-0.047740
-0.025000
-0.018490
-0.017990
-0.015930
-0.244520
-0.220590
-0.157970
-0.101460
-0.064650
-0.043750
-0.032680
-0.026320
-0.212650
-0.219530
-0.185290
-0.138420
-0.096990
-0.066300
-0.046270
-0.035950
-0.186440
-0.210220
-0.196490
-0.161110

0.192710
-0.108120

0.056030

0.024480

0.007170

0.001950
-0.197880

0.053600

0.105380

0.079120

0.047190

0.021730

0.004980
-0.000110
-0.280700
-0.119410
-0.012760

0.017740

0.015540

0.005140
-0.004520
-0.006540
-0.273860
-0.196280
-0.103330
-0.048160
-0.025310
-0.018640
-0.018010
-0.015890
-0.244830
-0.220120
-0.157680
-0.101430
-0.064690
-0.043740
-0.032620
-0.026220
-0.214550
-0.219410
-0.184780
-0.138020
-0.096720
-0.066120
-0.046120
-0.035800
-0.187450
-0.209700
-0.195660
-0.160360

99.650
99.518
99.657
99.645

99.628

99.455
98.440
96.471
98.374
98.864
99.072
99.111
98.753
115.988
98.650
99.503
108.229
95.523
97.052
95.848
101.417
100.005
99.472
99.531
100.112
100.869
101.246
100.790
100.115
99.760
100.128
99.787
99.814
99.977
100.053
99.991
99.823
99.643
100.891
99.946
99.725
99.707
99.725
99.719
99.667
99.569
100.544
99.756
99.580
99.535
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196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

909.089450
936.656910
955.989520
964.999160
784.883410
804.257110
832.799860
866.826590
900.998830
930.551950
951.988900
961.875430
783.555740
802.474160
830.318040
863.854690
898.100340
928.233820
950.374840
960.532190
782.904350
801.600690
829.102930
862.393840
896.665910
927.078740
949.564460
959.852690
670.357340
647.393150
614.436810
569.515910
510.326130
433.622300
332.650720
186.625180
687.402280
666.179190
634.965330
591.514530
533.462270
458.177600
361.999770
241.168070
704.068700
685.025900
656.184340
614.986500
558.997580
486.457450

-908.969210

936.572990
955.,932300
964.955570
784.710260
804.054090
832.600760
866.655860
900.867220
930.458790
951.925760
961.827710
783.386870
802.274170
830.118870
863.681020
897.964690
928.137120
950.309290
960.482710
782.737510
801.402240
828.903800
862.218770
896.528290
926.980290
949.497710
959.802330
670.266400
647.289780
614.322390
569.399920
510.228900
433.577820
332.729660
187.275810
687.331930
666.070870
634.801550
591.281560
533.154440
457.795030
361.536920
240.493170
704.025000
684.933850
656.015490
614.712580
558.596120
485.911060

-0.120240
-0.083920
-0.057220
-0.043590
-0.173150
-0,203020
-0.199100
-0.170740
-0.131610
-0,093150
-0.063140
-0.047720
-0.1638870
-0.199990
-0.199160
-0.173670
-0.135650
-0.096690
-0.065550
-0.049480
-0.166840
-0.198450
-0.199130
-0.175060
-0.137620
-0.098450
-0.066750
-0.050360
-0.090940
-0.103380
-0.114420
-0.115980
-0.097230
-0.044480

0.078930

0.650640
-0.070350
-0.108320
-0.163730
-0.232970
-0.307830
-0.382560
-0.462850
-0.674900
-0.043710
-0.092050
-0.168850
-0.273920
-0.401460
-0.546380

-0.119700
=0.083560
-0.056970
-0.043380
-0.171700
-0.201970
-0.197920
-0.169770
-0.130900
-0.092690
-0.062840
-0.047480
-0.166950
-0.198430
-0.197820
-0.172600
-0.134870
-0.096180
-0.065220
-0.049220
-0.164330
-0.196580
-0.197680
-0.173930
-0.136810
-0.097920
-0.066410
-0.050100
-0.092620
-0.106480
-0.118610
-0.121590
-0.104350
-0.053090

0.067910

0.657360
-0.066830
-0.107570
-0.161900
-0.224400
-0.285740
-0.339060
-0.382380
-0.476450
-0.034120
-0.093270
-0.174150
-0.275940
-0.391720
-0.514040

131

99.551 -

99.569
99.569
99.518
99.161
99.483
99.407
99.435
99.464
99.499
99.520
99.493
98.860
99.219
99.324
99.382
99.427
99.470
99.500
99.482
98.499
99.060
99.274
99.353
99.409
99.455
99.489
99.477
101.848
102.999
103.661
104.839
107.328
119.345
86.038
101.033
94.999
99.302
98.849
96.322
92.826
88.629
82.614
70.595
78.056
101.331
103.141
100.736
97.574
94.081



Table 5.3.1 continued

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

397.035040
297.264910
720.164270
703.962480
678.496900
640.872130
588.516300
520.391510
438.721770
353.044990
735.395460
722.864980
702.100480
669.830210
623.060850
560.848400
486.460930
409.774860
749.278720
741.280000
726.729480
701.987890
663.207990
608.499530
540.746160
469.192550
761.097080
758.273260
751.373400
736.633490
708.996200
664.312760
603.214220
533.948210
769.983920
772.392380
773.971660
771.630890
759.425100
729.458080
677.295650
607.928490
775.261310
781.978100
791.380310
802.425940
810.550440
804.052270
767.633290
699.520850

396.287820

296.034610
720.153150
703.900730
678 .349260
640.598130
588.078790
519.759280
437.845400
351.806240
735.416970
722.836150
701.978940
669.559720
622.583330
560.123000
485.466980
408.517960
749.330500
741.287250
726.645830
701.740910
662.710940
607.691400
539.636320
467.863750
761.171940
758.316800
751.343450
736.448710
708 .531500
663.453630
601.965030
532.473860
770.066520
772.462130
774.002220
771.553720
759.092370
728.638690
675.882370
606.174560
775.326430
782.045860
791.447510
802.464910
810.456290
803.530960
766.126510
697.222700

-0.747210
-1.230300
-0.011120
-0.061750
-0.147640
-0.274010
-0.437510
-0.632230
-0.876370
-1.238760

0.021510
-0.028830
-0.121540
-0.270490
-0.477530
-0.725400
-0.993950
-1.256890

0.051790

0.007250
-0.083600
-0.246980
-0.497040
-0.808130
-1.109840
-1.328790

0.074860

0.043540
-0.029950
-0.184780
-0.464700
-0.859130
-1.249190
-1.474350

0.082590

0.069740

0.030560
-0.077170

-0.332730 -

-0.819390
-1.413280
-1.753930
0.065120
0.067760
0.067200
0.038970
-0.094150
-0.521310
-1.506780
-2.298150

-0.676680
-1.098780
-0.002650
-0.062260

-0.152610

-0.274280
-0.422240
-0.587400
-0.783140
-1.081230

0.030350
-0.029460
-0.125990
-0.269300
-0.457640
-0.670280
-0.883530
-1.067160

0.061490

0.006820
-0.087960
-0.244900
-0.473490
-0.743770
-0.982210
-1.113190

0.085810

0.043510
-0.034860
-0.183170
-0.438610
-0.786690
-1.106040
-1.237720

0.095130

0.070310

0.024130
-0.079180
-0.308240
-0.739240
-1.260830
-1.496780

0.079920

0.069390

0.058770

0.029150
-0.083790
-0.445230
-1.303330
-2.059110

90.560
89.310
23.873
100.837
103.364
100.101
96.508
92.910
89.362
87.284
141.127
102.201
103.660
99.559
95.834
92.401
88.890
84.904
118.735
94.024
105.221
99.160
95.262
92.036
88.500
83.775
114.627
99.935
116.395
99.131
94.387
91.563
88.540
83.950
115.173
100.815
78.944
102.600
92.639
90.218
89.213
85.339
122.724
102.397
87.457
74.798
88.998
85.406
86.497
89.599
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296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

L

777.116790 777.133970 0.017180 0.033510 195.093
786.185880 786.207920 0.022040 -0.025870 117.342
800.547980 800.586860 0.038880 0.031210 80.268
822.019170 822.089660 0.070490 0.054600 77.455
851.149510 851.243410 0.093890 0.079750 84.934
882.383610 882.365300 -0.018310 0.005780 -31.567
886.252760 885.452810 -0.799950 -0.651770 81.476
819.420130 816.000120 -3.420010 -3.101070 90.674
777.384530 777.329830 -0.054710 -0.033010 60.336
786.667390 786.603100 -0.064290 -0.051580 80.230
801.827370 801.759080 -0.068290 -0.066450 97.298
826.220540 826.160750 -0.059800 -0.068570 114.670
865.789770 865.770730 -0.01904 -0.040940 215.064
930.718850 930.769820 0.050980 0.020270 39.768
1009.672510 1009.414690 -0.257820 -0.221050 85.739
1029.763760 1027.087350 -2.676410 -2.076330 77.579
779.599730 779.469730 -0.130000 -0.134900 103.768
788.256700 788.097650 -0.159060 -0.162400. 102.105
802.017030 801.817440 -0.199600 -0.200630 100.519
823.822100 823.566980 -0.255120 -0.255400 100.112
859.881480 859.553390 -0.328090 -0.325410 99.184
921.305750 920.881610 -0.424140 -0.411440 97.006
1057.980240 1057.591970 -0.388270 -0.353050 90.927
1355.168670 1356.577950 1.409280 1.341410 95.184
Table 5.3.2 SDSA Result of Fillet
with Straight Boundary
Using Boundary Approach
von Mises Stress Actual Predict Ratio x 100
oLD NEW Change Change %
5.8472E 02 5.8462E 02 -9.8457E-02 -9.9620E-02 101.2
5.6118E 02 5.6110E 02 -7.6042E-02 -7.6976E-02 101.2
5.2143E 02 5.2140E 02 -3.1542£-02 -3.1994E-02 101.4
4.8035E 02 4.8038E 02 2.7311E-02 2.7583E-02 101.0
4,5909E 02 4.5916t 02 7.6280E-02 7.7319E-02 101.4
5.9974E 02 5.9964E 02 -1.0007E-01 -1.0126E-01 101.2
5.7453E 02 5.7445E 02 -8.2602E-02 -8.3568E-02 101.2
5.2974E 02 15,2970t 02 -4.3296E-02 -4.3837E-02 101.2
4,7817E 02 4.7820E 02 2.1408E-02 2.1646E-02 101.1
4.4347E 02 4.4356t 02 9.2272E-02 9.3390E-02 101.2
6.2817E 02 6.2807E 02 -9.6188E-02 -9.7491E-02 101.4
6.0042E 02 6.0033t 02 -8.8724E-02 -8.9666E-02 101.1
5.4726E 02 5.4719t 02 -6.4247E-02 -6.4827E-02 100.9
4,7586E 02 4.7586E 02 2.4702E-03 2.0327E-03 82.3
4,1061E 02 4.1073E 02 1.2390E-01 1.2605E-01 101.7
6.6601E 02 6.6594E 02 -7.5820E-02 -7.7574E-02 102.3

133



Table 5.3.2 continued

6.3572E
5.7357¢
4.7770E
3.5786E
6.9710E
7.1825E
6.9661E
6.5764E
5.8102E
4.6113E
2.7831E
7.3320E
7.1372E
7.4496E
7.2683E
7.5486E
7.3979¢
7.6261E
7.5330E
7.6786E
7.6679E
7.7083t
7.8030€
7.7220E
7.9258¢E
7.7396E
8.0246E
7.7936E
8.1129¢
7.9207¢t
8.2856E
8.1229E
8.7653E
9.6294E
1.0618E
1.1814E
1.4505¢E
8.4589E
8.4880E
8.7496E
9.4940E
1.0360E
1.1757€
9.0223E
9.1490¢E
9.4206E
9.8482E
1.0336E
1.0508E
9.5391E

6.3564E
5.7349€
4.7765E
3.5803€
6.9705E
7.1822€
6.9658€E
6.5758E
5.8096E
4.6109€E
2.7853E
7.3320€
7.1371E
7.4498E
7.2683E
7.5489€
7.3980E
7.6264€
7.5331E
7.6789E
7.6679E
7.7085E
7.8029E
7.7220E
7.9256E
7.7392€
8.0241E
7.7928€
8.1119E
7.9196E
8.2841E
8.1217E
8.7637€
9.6279E
1.0618E
1.1816E
1.4513€
8.4576E
8.4867E
8.7483€
9.4932E
1.0360E
1.1760E
9.0213E
9.1482E
9.4200€
9.8480E
1.0337€
1.0508E
9.5386E

-7.9878E-02
-7.8812E-02
-4.0955E-02

1.7009E-01
-4.6633E-02
-2.1667E-02
-3.4476E-02
-5.1717€-02
-5.8213E-02
-3.5838E-02

2.1711E-01
-5.5668E-04
-1.4117€-02

1.4907E-02
-2.6504E-03

2.6403E-02

3.6352E-03

3.2185E-02

4.2699E-03

3.0237E-02
-8.2116E-05

1.8665E-02
-8.5100€-03
-3.9166E-03
-2.2806E-02
-3.6666E-02
-5.0694E-02
-7.4859E-02
-1.0150E-01
-1.0919€-01
-1.5614E-01
-1.2628E-01
-1.6071E-01
-1.4614E-01
-2.7731E-02

1.9755E-01

8.0147E-01
-1.2561E-01
-1.2924E-01
-1.2866E-01
-8.2362E-02

2.1150€-02

2.7348E-01
-9.5021E-02
-8.6615E-02
-6.3294E£-02
~1.7413E-02

4.7816E-02

6.4612E-02
-5.1860E-02

-8.0915E-02
-7.9284E-02
-3.7159€-02

1.7004E-01
-4.8954E-02
-2.4437E-02
-3.7337E-02
-5.4135E-02
-6.1250E-02
-4.5165E-02

2.4585E-01
-3.4957E-03
-1.7536E-02

1,2083E-02
-5.9254E-03

2.3951E-02

7.3813E-04

3.0361E-02

2.0049E-03

2.9227E-02
-1.6278E-03

1.8496E-02
-9.4092£-03
-3.3413E-03
-2.3068E-02
-3.5606E-02
-5.0720E-02
-7.3769E-02
-1.0170E-01
~1.0866E-01
-1.5726E-01
-1.2669E-01
-1.6511E-01
-1.5889E-01
-4.2805E-02

1.3362E-01

9.8812E-01
-1.2727€-01
~1.3139E-01
-1.3244E-01
-9.0174E-02

9.9812E-03

2.8391E-01
-9.7820E-02
-8.9951E-02
-6.7537E-02
-2.1861E-02

4.6460E-02

7.4788E-02
-5.5044E-02

101.3
100.6
90.7
100.0
105.0
112.8
108.3
104.7
105.2
126.0
113.2
628.0
124.2
8l.1
223.6
90.7
20.3
94.3
47.0
96.7
1982.3
99.1
110.6
85.3
101.2
97.1
100.1
98.5
100.2
99.5
100.7
100.3
102.7
108.7
154.4
67.6
123.3
101.3
101.7
102.9
109.5
47.2
103.8
102.9
103.9
106.7
125.5
97.2
115.7
106.1
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Table 5.3.1 continued

9.6080E
9.7339E
9.8928E
1.0021E
1.0033E
6.5150E
5.7123E
4.3689¢E
2.3246E
6.8278E
6.5023¢E
5.8080E
4.4891Et
2.5724E

6.9411E

6.5909E
5.9088E
4.6213E
2.8408E
6.7732E
6.0183t
4.7693E
3.1242E
6.8648E
6.1412E
4.9370E
3.4163E
7.1586E
6.8901E
6.2816E
5.1280E
3.7164E
7.2978E
7.0140¢t
6.4398E
5.3431E
4,0249E
7.2171E
6.6186E
5.5832E
4.3436E
7.4656E
6.9300E
5.9934E
4.8463E
7.7840€
7.4416E
6.6588E
5.5962E
8.1496E

9.6075¢E
9.7335E
9.8927E
1.0021E
1.0033E
6.5147E
5.7120¢
4.3692
2.3252E
6.8275E
6.5019E
5.8076E
4.4890E
2.5683t
6.9409€
6.5905E

5.9083E

4.6206E
2.8340E
6.7728E
6.0177¢
4.7682E
3.1170E
6.8644E
6.1404E
4.9356E
3.4094t
7.1583t
6.8896E
6.2806E

- 5.1261E

3.7094E
7.2975E
7.0134E
6.4385E
5.3407¢
4,0176E
7.2164E
6.6170€
5.5804E
4.3363E
7.4648E
6.9281E
5.9901E
4.8390€
7.7831E
7.4392E
6.6547¢
5.5887¢
8.1486E

-4.4736E-02
-3.1269E-02
-1.2528€E-02

- 2.5947E-03

5.4674E-03
-3.4835E-02
-3.2074E-02

2.8959£-02

5.2253E-02
-2.6929€-02
-3.3505E-02
-3.8434£-02
-9.2676E-03
-4.1053E-01
-2.3410E-02
-3.8249E-02
-5.2282E-02
-7.0384E-02
-6.8259E-01

-3.6266E-02

-6.4684E-02
-1.0739E-01

-=7.1824E-01

-4.0228E-02
-8.0436E-02
-1.3911E-01
-6.8478E-01
-2.7971E-02
-5.7235E-02
-1.0405E-01
-1.8740E-01
-7.0011E-01
-3.6761E-02
-6.9666E-02
-1.3026E-01
-2.3761E-01
-7.2833E-01
-7.2612€-02
-1.5638€-01
-2.7896E-01
-7.3364E-01
-8.0280E-02
-1.9571E-01
-3.3356E-01
-7.3516E-01
-9.7854E-02
-2.4377E-01
-4.0393E-01
~7.5858E-01
-1.0110€-01

-4.7812E-02
-3.3909E-02
-1.4404E-02

2.7839E-03

5.5965E-03
-4.3554E-02
-5.0166E-02
-3.3072E-02

1.4734E-01
-2.9217E-02
-3.9074E-02
-4,5093E-02
-2.1597E-02
-3.9519E-01
-2.6525E-02
-3.9128E-02
-4.9861E-02
-3.8428E-02
-7.3049E-01
-3.9646E-02
-6.4156E-02
-8.2539E-02
-7.5366E-01
-4.4847E-02
-8.2375E-02
-1.3250€-01
-6.9505E-01
-3.0594E-02
-5.9934E-02
-1.0340E-01
-1.7829€-01
-7.1850E-01
-3.8931E-02
-7.0822E-02
-1.2740E-01
-2.2293E-01
~7.5729E-01
-7.4042£-02
-1.5376E-01
-2.6738E-01
-7.5935E-01
-8.1695E-02
-1.9392E-01
-3.2718E-01
-7.5475E-01
-9.9726E-02
-2.4520£-01
-4.0039E-01
-7.7189E-01
-1.0252E-01

106.9
108.4
115.0
107.3
102.4
125.0
156.4
-114.2
282.0
108.5
116.6
117.3
233.0
96.3
113.3
102.3
95.4
54.6
107.0
109.3
99.2
76.9
104.9
111.5
102.4
95.2
101.5
109.4
104.7
99.4
95.1
102.6
105.9
101.7
97.8
93.8
104.0
102.0
98.3
95.8
103.5
101.8
99.1
98.1
102.
101.9
100.6
99.1
101.8
101.4
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Table 5.3.2 continued

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

8.0828E Q2
7.5057¢
6.5019E 02
8.5084E

8.8459€ 02
8.6715E 02

7.6924E 02

8.7609E 02

I

9.4734E 02
1.0189E 03
9.7359E 02
8.9835E
9.6573E 02
1.1268E 03
1.3703E. 03

8.0802E
7.5008€E
6.4938E
8.5074E
8.8437E
8.6662E
7.6827E
8.7596E
9.4715E
1.0184E
9.7208€E
8.9813€
9.6546E
1.1265E
1.3692E

-2.6544E-01
-4.9053E-01
-8.1125E-01
-9.6889E-02
-2.1814E-01
-5.2329E-01
-9.6725E-01
-1.3263E-01
-1.8844E-01
-4,5285E-01
-1.5169E 00
-2.1448E-01
-2.6382E-01
-2.8979£-01
-1.0865E 00

-2.7164E-01
-4.9405E-01
-8.1443E-01
-9.7769E-02
-2.2146E-01
-5.6106E-01
-9.4236E-01
-1.3443E-01
-1.9434E-01
-4.0735E-01
-1.5908E 00
-2.2030€E-01
-2.6761E-01
-2.9140E-01
-1.1314E 00

102.3
100.7
100.4
100.9
101.5
107.2

97.4
101.4
103.1

90.0
104.9
102.7
101.4
100.6
104.1

Table 5.3.3 SDSA Result of Fillet at Optimum
Using Boundary-layer Approach
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von Mises Stress

oLD

NEW

Actual
Change

Predict
Change

Ratio x 100

343.515150
331.365630
306.913410
270.036600
221.172710
162.210080

98.627940

42.960540

21.549280
365.879780
359.105100
345.803600
326.438890
301.382400
269.915720
227.437390
164.299510

78.587680
404.295720
402.361860
398.686760
393.435400
386.176640
374.863840
354.393860
318.244380

343.759790
331.620230
307.186320
270.332220
221.487850
162.529200

98.915280

43.112780

21.546520
366.077950
359.306990
346.012450
326.657620
301.615570
270.174200
227.742300
164.666180

78.928070
404.434830
402.501110
398.827400
393.581770
386.339650
375.065260
354.669560
318.634050

0.244640
0.254610
0.272910
0.295620
0.315140
0.319120
0.287340
0.152240
-0.002770
0.198170
0.201890
0.208850
0.218730
0.233160
0.258480
0.304910
0.366670
0.340390
0.139110
0.139250
0.140640
0.146370
0.163010
0.201420
0.275700
0.389670

0.249350
0.259470
0.278020
0.300980
0.320500
0.323950
0.290810
0.155200
-0.006800
0.201970
0.205760
0.212850
0.222980
0.237910
0.264300
0.312660
0.377030
0.351670
0.141810
0.141980
0.143490
0.149540
0.166930
0.206870
0.283830
0.402050

101.925
101.909
101.873
101.811
101.701
101.512
101.207
101.939
245.578
101.917
101.914
101.916
101.942
102.035
102.251
102.544
102.824
103.314
101.939
101.962
102.027
102.166
102.408
102,704
102.946
103.176




Table 5.3.3 continued

27

256.144300
452.904690
454.408350
457.419190
461.777350
466.859250
471.265430
473.093340
471.503560
465.888710
506.225050
509.765180
516.721640
526.794860
539.469850
554,172150
570.915180
591.604000
622.427670
559.408820
563.885600
572.649250
585.330040
601.440030
620.580020
642.834100
669.263090
701.945860
608.457200
613.112980
622.189280
635.234310
651.632940
670.702630
691.803840

714.217760

736.392640
650.321730
654.710070
663.212230
675.286500
690.141100
706.753380
723.859730
739.843430
752.562560
682.495070
686.532000
694.288720
705.127740

.256.680720

452.977100
454.479450
457.489390
461.850830
466.946230
471.384150
473.270510
471.771280
466.323830
506.227230
509.765440
£16.719500
526.792570
539.473210
554.190150
570.957270
591.676100
622.530500
559.341290
563.815700
572.575480
585.252340
601.359670
620.498050
642.747990
669.160350
701.790010
608.324520
612.977550
622.048790
635.087030
651.477310
670.536010
691.620160
714.004550
736.129220
650.132320
654.517720
663.014190
675.080280
689.924220
706.522820
723.611150
739.570910
752.260250
682.261220
686.295130
694.045960
704.876460

0.536420
0.072410
0.071100
0.070200
0.073480
0.086980
0.118720
0.177170
0.267720
0.435120
0.002190
0.000260
-0.002140
-0.002290
0.003360
0.018010
0.042090
0.072100
0.102830
-0.067530
-0.069900
-0.073770
-0.077690
-0.080360
-0.081970
-0.086120
-0.102740
-0.155350
-0.132680
-0,135420
-0,140480
-0.147280
-0.155630
-0.166620
-0.183680
-0,213220
-0.263410
-0.189410
-0.192350
-0.198040
-0.206220
-0.216880
-0.230560
-0.248580
-0.272520
-0.302310
-0.233850
-0.236870
-0.242770
-0.251270

0.554200
-0.073870
0.072580
0.071780
0.075330
0.089410
0.122190
0.182190
0.274520
0.443830
0.002340
0.000410
-0.001960
-0.002000
0.003860
0.018780
0.042940
0.072250
0.101220
-0.068710
-0.071110
-0.075020
-0.079010

* -0.081800

-0,083720
-0.088620
-0.106930
-0,162940
-0,135130
-0.137920
-0.143080
-0.150050
-0.158700
-0.170220
-0.188230
-0.219390
-0,271870
-0.192960
-0.195960
-0,201780
-0.210170
-0.221150
-0.235310
-0.254050
-0.279000
-0.310140
-0.238260
-0.241350
-0.247370
-0.256070

103.315
102.021
102.089
102.249
102.509
102.791
102.921
102.830
102.540
102.013
106.746
156.414

91.615

87.519
114.795
104.277
102.031
100.205

98.436
101.752
101.731
101.702
101.699
101.793
102.129
102.909
104.079
104.549
101.843
101.842
101.850
101.884
101.974
102.164
102.480
102.897
103.211
101.874
101.878
101.889
101.915
101.968
102.061
102.200
102.379
102.592
101.888
101.891
101.897
101.910
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718.087820
731.883720
744.921540
755.367940
761.453530
762.987860
761.773040
760.750730
763.253410
771.074040
784.187360
801.451600
821.634780
843.730560
866.750610
889.660680
911.475610
704.002700
707.777850
714.968430
724.846570
736.307470
747.881730
757.816200
764.325150
766.158120
764.321050
761.366190
759.240840
760.250330
766.038310
777.160470
793.209310
813.247370
836.104070
860.462270
884.951730
908.281540
714.907240
718.519090
725.360080
734.654630
745.226640
755.527060
763.763410
768.245210
768.063010
764.805230
761.117220
758.479670

717.825720

731.608770
744.632180
755.063720
761.136160
762.661590
761.443910
760.415650
762.904320
770.708980
783.813760
801.086990
821.296600
843.424830
866.464700
889.365830
911.142480
703.738690
707.510800
714.695480
724.565230
736.015910
747.579130
757.503320
764.004960
765.835860
764.001380
761.050760
758.927600
759.935090
765.718820
776.839960
792.896270
812.950540
835.825010
860.189770
884.662700
907.952220
714.627790
718.236620
725.071730
734.358180
744.920580
755.211340
763.440070
767.918850
767.740160
764.490030
760.809840
758.178530

-0.262100
-0.274950
-0.289360
-0,304220
-0.317370
-0.326270
-0.329130
-0,335070
-0.348590
-0,365060
-0.373600
-0.364610
-0.338180
-0.305730
-0.285910
-0.294850
-0.333140
-0.264010
-0.267050
-0.272960
-0.281340
-0.291560
-0.302600
-0.312880
-0.320200
-0.322250
-0.319670
-0.315420
-0.313240
-0.315240
-0.319490
-0.320510
-0.313040
-0.296830
-0.279060
-0.272500
-0.289020
-0.329320
-0.279450
-0.282470
-0.288300
-0,296450
-0.306060
-0.315720
-0.323340
-0.326360
-0.322850
-0.315200
-0.307380
-0.301130

-0.267160
-0.280330
-0.295090
-0.310220
-0.323590
-0.332910
-0.339210
-0.336570
-0.347780
-0.362460
-0.369660
-0.359600
-0.332780
-0.301600
-0.286940
-0.292870
-0.338690
-0.269010
-0.272110
-0.278130
-0.286670
-0.297070
-0.308260
-0.318580
-0.325690
-0.327070
-0.324240
-0.317380
-0.313570
-0.314750
-0.317670
-0.317480
-0.309260
-0.293110
-0.277180
-0.272320
-0.287880
-0.332330
-0.284750
-0.287830
-0.293760
-0,302050
-0.311780
-0.321480
-0.328960
-0,331530
-0.327150
-0.317780
-0.308010
-0.300330

101.929
101.954
101.978
101.973
101.961
102.033
103.062
100.447
99.767
99.286
98.945
98.626
98.402
98.649
100.358
99.326
101.668
101.894
101.895
101.896
101.897
101.891
101.871
101.821
101.715
101.494
101.431
100.621
100.105
99.846
99.432
99.0583
98.794
98.747
99.325
99.933
99.603
100.928
101.896
101.896
101.894
101.887
101.868
101.826
101.739
101.584
101.331
100.820
100.207
99.733
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Table 5.3.3 continued

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

" 146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

758.838460
763.740840
773.947240
789.369070
809.251090
832.402380
857.371130
882.614320
906.689340

1013.278680
1004.323000

999.636320
997.563100
997.209990
997.881110
998.982410
999.878280

1021.965700
1010.780050
1004.718880
1001.498580
1000.000720

999.580790
999.793130

1000.284420
1014.099910
1009.583790
1005.272870
1002.587160
1001.089330
1000.423260
1000.355560
1000.763810
1000.456210
1001.950360
1001.654790
1000.990600
1000.515760
1000.322900
1000.464470
1001.099050

984.528990
991.255930
995.198590
997.363250
998.606270
999.424060

1000.161070
1001.223180

968.237360

.758.540390
763.443610
773.651930
789.080260
808.973650
832.135890
857.105060
882.328310
906.361980
1014,923580
1005.198280
1000.178890
997.870600
997.371580
997.948000
998.997890
999.878750
1022.113240
1011.263380
1005.087850
1001.751690
1000.151510
999.655860
999.816480
1000.284670
1013.683260
1009.522430
1005.360420
1002.691860
1001.164870
1000.459330
1000.355900
1000.747890
999.926520
1001.601710
1001.495220
1000.929600
1000.489140
1000.297650
1000.427370
1001.056010
984.019440
990.8306790
994.886050
997.167690
998.482020
999.334300
1000.082750
1001.147460
967.767890

-0.298070
-0.297230
-0.295310
-0.288810
-0.277450
-0.266480
-0.266070
-0.286010
-0.327360
1.644910
0.875270
0.542570
0.307490
0.161590
0.066890
0.015480
0.000470
0.147530
0.483330
0.368960
0.253120
0.150800
0.075070
0.023350
0.000250
-0.416660
-0.061370
0.087550
0.104710
0.075540
0.036070
0.000350

-0.015910

-0.529680
-0.348650
-0.159570
-0.061000
-0.026620
~-0.025250
-0.037100
-0.043040
-0.509550
-0.449150
-0.312540
-0.195560
-0.124250
-0.089760
-0.078310
-0.075720
-0.469460

-0.296780
-0.295380
-0.292700
-0.285720
-0.274580
-0.264060
-0.262490
-0.287600
-0.332630
1.593660
0.868310
0.534450
0.303890
0.159370
0.065900
0.015170
0.000450
0.186090
0.478090
0.367260
0.250810
0.149390
0.074290
0.023100
0.000290
-0.392020
-0.050710
0.090560
0.105170
0.075400
0.035940
0.000440
-0.015640
-0.522360
-0.338680
-0.154260
-0.058630
-0.025580
-0.024700
-0.036600
-0.042460
-0.512750
-0.445370
-0.308320
-0.192810
-0.122630
-0.088730
-0.077480
-0.074830
-0.476790

99.567
99.376
99.118
98.928
98.967
99.089
98.654
100.557
101.610
96.885
99.204
98.503
98.829
98.627
98.529
97.989
95.410
126.135
98.915
99.540
99.089
99.065
98.956
98.921
116.101
94.086
82.635
103.441
100.448
99.816
99.630
126.961
98.285
98.617
97.141
96.672
96.121
96.104
97.797
98.651
98.651
100.628
99.158
98.650
98.591
98.697
98 .850
98.933
98.827
101.560
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Table 5.3.3 continued

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
- 199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

979.578960
987.451840
992.591370
995.866540
997.999370
999.570680

1001.155870

953.128980
968.370520
979.664360
987.555720
992.848460
996.366410
998.848230

1000.963460

940.358340
958.700440
972.790960
983.002360
990.060400
994.830180
998.148610

1000.730790

933.468600
953.382750
968.943900
980.407470
988.445780
993.929110
997.732370

1000.579630

931.182510
951.548570
967.561780
979.437940
987.820890
993.570910
997.564110

1000.513710

930.038190
950.625630
966.864160
978.946810
937.503200

993.388220
997.477900

1000.479200

759.841920
754.260510
740.940650

979.111430
987.064650
992.305980
995.665120
997.853520
999.454200

1001.047060

952.696500
967.913930
979.248030
987.217990
992.593390
996.177590
998.700420

1000.825260

939.955160
958.261240
972.367050
982.637060
989.771450
994.611660
997.977850

1000.569780

933.080180
952.954720
968.520520
980.032160
988.141910
993.696320
997.549890

1000.406380

930.798600
951.125060
967.140080
979.060460
987.512410
993.333040
997.376960

1000.335160

929.656520
950.204400
966.443410

978.568400
987.192530

sl

993.147880
997.288430

1000.297980

759.512380
753.934110
740.657280

-0.467530
-0.387190
-0.285390
-0.201430
-0.145850
-0.116480
-0.108810
-0.432470
-0.456590
-0.416330
-0.337720
-0.255070
-0.188830
-0.147810
-0.138190
-0.403190
-0.439190
-0.423910
-0.365300
-0.288950
-0.218520
-0.170770
-0.161010
-0.388420
-0.428030
-0.423370
-0.375310
-0.303870
-0.232790
-0.182480
-0.173250
-0.383920
-0.423510
-0.421700
-0.377470

-0.308490 .

-0.237870
-0.187150
-0.178550
-0.381670
-0.421230
-0.420760
-0.378420
-0.310680
-0.240340
-0.189470
-0.181220
-0.329530
-0.326410
-0.283370

-0.468800
-0.385560
-0.283410
-0.199840
-0.144640
-0.115430
-0.107660
-0.441610
-0.460740
-0.417020
-0.336920
-0.253900
-0.187680
-0.146680
-0.136860
-0.411480
-0.444160
-0.426030
-0.365520
-0.288290
-0.217540
-0.169630
-0.159560
-0.393820
-0.432930
-0.425940
-0.376070
-0.303540
-0.231940
-0.181350
-0.171750
-0.388880
-0.427970
-0.424370
-0.378410
-0.308280
-0.237080
-0.186040
-0.177020
-0.386010
-0.425410
-0.423460
-0.379430
-0.239590
-0.188370
-0.179690
-0.336660
-0.338310
-0.295250

100.272
99.579
99.307
99.213
99.171
99.103
98.948

102.113

100.909

100.166
99.762
99.542
99.391
99.234
99.037

102.058

101.131

100.501

100.062
99,774
99.552
99.332
99.101

101.392

101.143

100.606

100.201
99.889
99.637
99.335
99.134

101.293

101.053

100.633

100.247
99.934
99.671
99.406
99.148

101.137

100.992

100.642

100.268
99,954

- @S NT

99.687
99.416
99.154
102.162
103.647
104.194
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Table 5.3.3 continued

227
228

229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

694.688710
557.871840
323.106040

92.890180

35.083260
761.895870
762.375990
762.652080
762.306930
757.034320
696.431200

500.720130

233.601980
762.881480
765.735980
770.401620
778.193890
788 .507600
807.003600
872.904840
987.671500
767.955940
774.698740
785.240870
801.969970
829.725720
881.292260
989.507140

779.379520
791.601060
810.180950
838.792160
883.742670
954.827320

1060.707650
1220.226630

796.041940
813.260850
838.303250
874.597690
926.793410

1000.394070
1099.525730
1202.637680 1201.890120

815.514450
835.722730
863.580330
901.439310
952.070080

.694.643440

558.317460
323.844010

93.345520

34.964610
761.551660
762.015220
762.278250
761.912570
756.683330
696.281610
500.665760
233.426030
762.521780
765.353150
769.989980
777.749140
788.038590
806.468450
872.181390
986.529380
767.568650
774.271920
784.765130
801.434680
829.113380
880.573870
988.646230

1216.525880 1215.613140

778.958330
791.120970
809.627600
838.150600
883.001060
953.992270

1059.838640
1219.475200

795.601510
812.750280
837.706230
873.900840
925.993820
999.514730

1098.639570

815.085030
835.225440
862.998520
900.756880
951.275900

-0.045270
0.445620
0.737970
0.455340

-0.118650

-0.344210

-0.360760

-0.373840

-0.394360

-0.350980

-0.149590

-0.054370

-0.175950

-0.359700

-0.382830

-0.411640

-0.444750

-0.469010

-0.535140

-0.723450

-1.142120

-0.387290

-0.426820

-0.475740

-0.535290

-0.612340

-0.718380

-0.360910

-0.912740

-0.421190

-0.480030

-0.553350

-0.641550

-0.741610

-0.835050

-0.869010

-0.751430

-0.440430

-0.510570

-0.597020

-0.696850

-0.799590

-0.879330

-0.886160

-0.747560

-0.429430

-0.497290

-0.581810

-0.682430

-0.794190

-0.052910
-0.450770

0.767140

0.491140
-0.131240
~0.375990
-0.404030
-0.419210
-0.437160
-0.359520

0.016850

0.453240

0.363650
-0.356070
-0.386530
-0.424950
-0.458370
-0.469050
-0.494580
-0.564050
-0.543410
-0.385440
-0.428560
-0.483080
-0.543090
-0.612130
-0.694380
-0.777290
-0.779690
-0.416180
-0.479830
-0.556450
-0.645610
-0.741950
-0.825250
-0.849310
-0.721580
-0.430750
-0.505480
-0.595570
-0.697940
-0.802190
-0.882920
-0.890210
-0.752620
-0.413620
-0.485550
-0.573400
-0.677090
-0.792410

116.891
101.155
103.953
107.861
110.608
109.234
111.993
112.137
110.854
102.431
-11.267
-833.600
-206.675
98.990
100.968
103.233
103.061
100.008
92.420
77.967
47.579
99.521
100.409
101.544
101.456
99.966
96.728
90.288
85.424
98.809
99.945
100.559
100.633
100.046
98.827
97.732
96.028
97.802
99.003
99.756
100.155
100.326
100.408
100.457
100.678
96.320
97.640
98.554
99.218
99.776
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Table 5.3.3 continued

277
278

314
315

319

1018.494780
1104.810060
1225.766450
836.460250
857.940800
886.302390
922.898340
969.207970
1027.268100
1101.912410
1207.434550
858.150750
879.726950
907.427240
941.978300
984.005950
1033.881040
1090.767920
1148.262330
879.885460
900.454860
926.306420
957.546570
993.896210
1034.148610
1073.136050
1093.408670
900.886600
919.335760
941.992830
968.233580
996.717560
1024.849030
1049.963070
1078.494590
920.594620
936.385420
955.396730
976.519280
997.982090
1017.347190
1032.722000
1039.737220

1017.592640
1103.841610
1224.842630
836.071020
857.498170
885.790180
922.293810
968.477290
1026.367740
1100.812380
1206.217500
857.814180
879.360860
907.021290
941.509950
983.422970
1033.073520
1089.547990
1146.525160

879.587020
900.151280

926.000130
957.233790
993.548950

1033.659880

1072.085030
1090.747020
900.583950
919.032140
941.695020
967.950600
996.459570
1024.598270
1049.604250
1076.451580
920.248050
936.015730
954.998920
976.087770
997.509290
1016.825410
1032.360310
1041.679120

-0.902140
~0.968450
-0.923820
-0,389230
-0.442630
-0.512210
-0.604530
-0.730680
-0.900350
-1,100030
-1.217060
-0.336560
-0.366090
-0.405950
-0.468360
'0.582980
-0.807520
-1.219930
-1.737170
-0.298440
-0.303580
-0.306290
-0.312780
-0.347260
-0.488730
-1.051020
-2.661650
-0.302660

-0.303620 -

-0.297810
-0.282970
-0.,257990
-0.250770
-0.358830
-2,043010
-0,346570
-0.369690
-0.397810
-0.431520
-0.472800
-0,521780
-0.361690

1.941900

-0.,905230
-0.977660
-0.939110
-0.366470
-0.422810
-0.494530
-0.588460
-0.716370
-0.890570
-1.099870
-1.217250
-0.306640
-0.338200
-0.379260
-0.439790
-0.549810
-0.771330
-1.184320
-1.747450
-0,262870
-0.270920
-0.274600
-0.277360
-0.302140
-0.420560
-0.946190
-2.674330
-0.276550
-0.282730
-0.282320
-0.270960
-0.249150
-0.240040
~-0.335310
-1.607990
-0.356840
-0.379200
-0.406560
-0,442390
-0.434130
-0.523120
-0.320900

1.912430

100.342
100.951
101.654
94.152
95.524
96.549
97.341
98.041
98.913
99.986
100.016
91.108
92.382
93.425
93.901
94.310
95.518
97.081
100.592
88.081
89.241
89.652
88.674
87.008
86.050
90.026
100.495
91.376
93.120
94.799
95.754
96.573
95.724
93.447
78.707
102.963
102.572
102.202
102.521
102.397
100.256
88.722
98.482
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Elt

M

Table 5.3.4 SDSA Result of Fillet at Optimum
Using Boundary Approach

von Mises Stress

OLD

New

Actual
Change

Predict
Change

Ratio x 100

5.7717¢E
4.4401Et
3.1938E
7.5125E
7.0910E
6.0921E
4.4736E
2.6003E
7.6520E
7.4161E
6.5226E
4.4626E
1.6907E
7.6311E
7.5938E
7.5982E
7.5764E
6.9135€
3.4246E
5.2213E
7.5894E
7.6659E
7.6518E
7.8331E
7.7792E
8.1051E
7.9624E
8.4214E
8.1900E
8.7360E
8.4465E
9.0267E
8.7158E
9.2816E
8.9817t
9.4990E
9.2283E
9.6752E
9.4412E

7.1331E 02
6.5899E 02
5.5964E 02
4.4111E 02
3.4997E 02
7.2874E 02
6.7756E 02
5.7713E 02
4.4407E Q2
3.1953E 02
7.5107E 02
7.0895E 02
6.0916E 02
4.4744E 02
2.6020E 02
7.6501E 02
7.4144E 02
6.5219E 02
4.4641E 02
1.6925E 02
7.6295E 02
7.5923E 02
7.5965E 02
7.5741E 02
6.9132€ 02
3.4281E 02
5.2303€ 01
7.5879E 02
7.6640E 02
7.6502E 02
7.8308E 02
7.7773E 02
8.1021E 02
7.9604E 02
8.4180E 02
8.1879E 02
8.7324E 02
8.4444E 02
9.0233t 02
8.7138E 02
9.2788Et 02
8.9798E 02
9.4968E 02
9.2264E 02
9.6734E 02
9.4391E 02

-1.6878E-01
-1.2209e-01
-3.9794E-02

5.5723E-02

1.3963E-01
-1,7547E-01
-1.2937€-01
-4.3532E-02

5.6628E-02

1.5139E-01
-1.8421E-01
-1.4457E-01
-4.5148E-02

7.7085E-02

1.6836E-01
-1.8310E-01
-1.6393E-01
-7.2275€E-02

1.5784E-01

1.8455€E-01
-1.6060E-01
-1.4921E-01
-1.7762E-01
-2.2665E-01
-3.2621E-02

3.4492£-01

9.0667E-02
-1.5128E-01
-1.8394E-01
-1.6579E-01
-2.3080£-01
-1.8635E-01
-3.0049E-01
-2.0412E-01
-3.4741E-01
-2.1213E-01
-3.5742E-01
-2.0855E-01
-3.3462E-01
-1.9771E-01
-2.8423E-01
-1.8845E-01
-2.1904E-01
-1.8939€-01
-1.8070E-01
-2.0135E-01

-1.4733E-01
-1.0575E-01
-3.3762E-02

4.8161E-02

1,1888E-01
-1.5506E-01
-1.1275E-01
-3.6705E-02

4.9339E-02

1.2898E-01
-1.6772E-01
-1.2734E-01
-3.6188E-02

6.7049£-02

1.4359€E-01
-1.7672€-01
-1.4695E-01
-5.5553€E-02

1.4968E-01

1.4864E-01
-1.6507E-01
-1.5729€-01
-1.8667E-01
-2.1449E-01

2.5778E-02

3.0472E-01

9.9984E-02
-1.5552E-01
-1.9222E-01
-1.6206E-01
-2.2156E-01
-1.7301E-01
-2.7236E-01
-1.8338E-01
-3.1397€-01
-1.8811E-01
-3.2975E-01
-1.8513E-01
-3.1638E-01
-1.7744E-01
-2.7394E-01
-1,7234E-01
-2.1483E-01
~1.7709E-01
-1,7945E-01
-1.9196E-01

88.1

95.3
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9.8004Et
9.5984E
9.9143t
1.0086E
1.0114E
1.0118E
1.0101E
9.7460E
9.7653E
9.8548E
9.9850E
1.0047E
1.0016E
9.8890E
9.9139E
9.9545E
9.9958E
1.0013¢t
9.9853E
9.9880E
9.9930E
1.0001E
1.0006E
1.0004€
9.9936E
7.6621E
7.5626E
4.0619E
5.6629E
7.7654¢
7.8064E
7.9341E
8.2903E
5.0835E
8.0069E
7.9665E
8.2977E
8.6576E
1.2008¢t
8.3184E
8.7361E
9.7568E
1.2003¢E
8.5908E
9.1622E
1.0242E
1.0546E
8.6134E
8.9480¢E
9.4550€E

9.7984E
9.5962E
9.9120t
1.0084E
1.0113€
1.0120¢t
1.0111E
9.7440E
9.7632E
9.8527E
9.9834E
1.0046E
1.0020¢t
9.8874E
9.9124E
9.95632E
9.9951E
1.0014E
9.9867E
9.9869E
9.9921E
1.0000E
1.0006E
1.0004E
9.9937E
7.6597¢t
7.5598E
4.0695E
5.6589E
7.7632E
7.8038E
7.9294E
8.2852E
5.0887¢
8.0039€
7.9639¢E
8.2928E
8.6507E
1.1984E
8.3143E
8.7301E
9.7462E
1.1988E
8.5858E
9.1549¢t
1.0229¢
1.0547¢E
8.6087E
8.9423E
9.4479E

-2.0352E-01
-2.1140€-01
-2.2750E-01
-2.0521E-01
-6.9032E-02
1.7063E-01
1.0119€ 00
-2.0375E-01
-2.0924E-01
-2.1007E-01
-1.6589E£-01
-3.8143E-02
4.3657£-01
-1.5872E-01
-1.5139E-01
-1.2651£-01
-6.5606E-02
4.5266E-02
1.4035E-01
-1.0675E-01
-9.5022£-02
-7.1633E-02
-3.6898E-02
-1.0972E-03
1.3883E-02

. =2.3827E-01

-2.8732E-01

7.6283E-01
-4.0020E-02
-2.1809E-01
-2.5953E-01
-4.6884E-01
-5.1069E-01

5.2571E-01
-2.9558E-01
-2.6252E-01
-4.8937E-01
-6.8731E-01
-2.4295E 00
-4.0881E-01
-5.9955E-01
-1.0613E 00
-1.5543E 00
-4.9900E-01
-7.3539E-01
-1.2795& 00

1.0742E-01
-4.6770E-01
-5.6582E-01
-7.0984E-01

-2.0099E-01
-2.0402E-01
-2.2442€-01
-2.0524E-01
~7.4673E-02
1.4186E-01
1.1085E 00
-1.9877E-01
-2.0465E-01
-2.0703E-01
-1.6631E-01
-4.13136-02
4,3558E-01
-1.5670E-01
-1.5002E-01
-1.2644E-01
-6.7161E-02
4,2634E-02
1.4507E-01
-1.0717€-01
-9.5581E-02
-7.2355E-02
-3,7660E-02
-1.1074E-03
1.3537E€-02
-2.4628E-01
~2.2988E-01
8.2264E-01
-3.6689E-02
-2.3139E-01
-2.6923E-01
-5.4161E-01
~4.7843E-01
1.0243E 00
-2.8017€-01
-2.5325E-01
-4.5928E-01
-3.9711E-01
-2.9116E 00
-3.6058E-01
-4.8429E-01
-8.2982€-01
-1.9347E 00
-4.4503E-01
-6.3187E-01
-1.3476E 00
4.8463E-01
-4.1540E-01
-5.0033E-01
-6.4016E-01

98.8
96.5
98.6
100.0
108.2
83.1
109.5
97.6
97.8
98.6
100.2
108.3
99.8
98.7
99.1
99.9
102.4
94.2
103.4
100.4
100.6
101.0
102.1
100.9
97.5
103.4
80.0
107.8
91.7
106.1
103.7
115.5
93.7
194.8
94.8
96.5
93.9
57.8
119.8
88.2
80.
78.2
124.5
89.2
85.9
105.3
451.2
88.8
88.4
90.2
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97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

5.3.4 Discussion

1.0351E
1.1139€
8.9720E
9.1816E
9.6707E
1.0533t
1.2005E
9.3432E
9.8997E
1.0773E
1.2000E
9.5435E
1.0144E
1.0964E
1.2001E
9.8241E
1.0357¢€
1.1060¢t
1.2000E
9.9968E
1.0437¢
1.0990¢€
1.1668E
1.0090E
1.0401E
1.0775E
1.1314E
1.0144¢E
1.0362E
1.0549¢t
1.0582E
1.0129¢
1.0242E
1.0303¢
1.0278E

03
03

1.0342E
1.1136E
8.9669E
9.1758E
9.6640E
1.0526E
1.1997€
9.3376E
9.8930E
1.0765E
1.1995E
9.5381E
1.0138€
1.0957€
1.1997E
9.8191F
1.0352€
1.1053€
1.1994E
9.9924E
1.0431E
1.0983€
1.1662E
1.0087E
1.0397E
1.0768E
1.1307E
1.0142€
1.0360E
1.0545E
1.0569€
1.0127€
1.0240E
1.0301E
1.0276€

-9.1180€E-01
-2.5416E-01
-5.1128E-01
-5.7527E-01
-6.7384E-01
-7.1123E-01
-7.4768E-01
-5.6393E-01
-6.6820E-01
-7.9243E-01
-5.3825E-01
-5.3831E-01
-6.3541E-01
-7.2912E-01
-4.5831E-01
-5.0158E-01
-5.9292E-01
-6.6831E-01
-5.2892E-01
-4.3597€-01
-5.4828E-01
-6.7922E-01
-5.7666E-01
-3.0901E-01
-4.3952E-01
-6.7458E-01
-7.9667£-01
-1.6283E-01
-1.9490€-01
-4.1929E-01
-1.3215€ 00
-1.8775E-01
-1.7384E-01
-1.3788E-01
~2.4327E-01

-8.8138E-01
-4.7332E-01
-4.6699E-01
-5.2682E-01
-6.3559€E-01
-6.7148E-01
-1.1593E 00
-5.2885E-01
-6.4750£-01
-8.3829E-01
-6.1813E-01
-5.2012E-01
-6.3578E-01
-7.7003E-01
~-5.5195E-01
-5.0218E-01
-6.1349E-01
-7.1596E-01
-5.7500E-01
-4 .4060€E-01
-5.6052£-01
-6.9766E-01
-5.9707E-01
-3.1716E-01
-4.5294E-01
-7.0266E-01
-7.9720E-01
-1.7156E-01
-2.0054E-01
-3.8934E-01
-1.4021E 00
-1.9073E-01
-1.7806E-01
-1.4788E-01
-2.4824E-01

96.7
186.2

91.3

91.6

94.3

94.4
155.1

93.8

96.9
105.8
114.8

96.6
100.1
105.6
120.4
100.1
103.5
107.1
108.7
101.1
102.2
102.7
103.5
102.6
103.1
104.2
100.1
105.4
102.9

92.9
106.1
101.6
102.4
107.3
102.0
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Shape design sensitivity analysis is performed using the boundary-

layer approach and results obtained are compared to previous SDSA
results by the boundary approach [23].

used, one-to-one comparison is not possible.

However, one can see

Due to differences in meshes
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general trends by comparing these results. Both methods give acceptable
shape design sensitivities for a fillet with straight boundary, but both
approaches show poor design sensitivities near poibt A of Fig. 5.3.10,
mainly due to ill-proportioned elements in contrast to good initial
element shapes (see Figs. 5.3.4 and 5.3.5). For the boundary-layer
approach, this may be avoided by adjusting the boundary-layer coordinate
system and adopting a curved inner bounding surface, as shown in Fig.

5.3.10.

Figure 5.3.10 Boundary-Layer with Curved Inner Bounding Surface

This problem also shows the reliability of the velocity element
approéch, which can add generality and convenience to the boundary-layer
approach. Velocity elements can greatly simplify the process of
evaluating velocity and derivatives of velocity within the boundary-
layer.

In the present work, only guidelines for locating a boundary-layer

in the domain are given. To make the boundary-layer approach more
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attractive, this area must be studied further, since accuracy and
efficiency of shape design sensitivity analysis by the boundary-layer
approach depends largely on size and location of the boundary-layer.

. B-splines are used to approximate the boundary. They prove to be
easy to manupulate and approximate the original boundary well. However,
they still have the basic characteristics of the spline family, such as
fluctuating when chord length changes rapidly from one segment to

another. One must sellect joint positions cautiously to avoid this.
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VI. CONCLUSION

Shape design sensitivity formulas for domain and boundary
approaches are mathematically identical. However, numerical results
obtained by each approach can be quite different, depending on numérica]
methods used. The domain approach can be coupled better with the finite
element method, taking advantage of the finite element method as a
domain type approximation method. Results of the present work show that
accuracy of shape design sensitivity is improved significantly by using
domain information, especially for problems with singular behavior;
e.g., along interfaces due to non-smooth boundaries or data.

Futhermore, the derivation of shape design sensitivity formula can
be simplified, avoiding use of intergration by parts and interface
boundary conditions. Consequently, shape design sensitivity formulas
for a built-up structures can be easily obtained by adding contributions
from each structural component of the structural system. In other
words, one can derive the shape design sensitivity formulas for any
built-up structure by assembling shape design sensitivty formulas of
each prototype structural components, taking care to enforce compatible
design velocity fields throughout the domain.

Results presented show the effectiveness of the boundary-layer
approach to shape design sensitivity analysis, which is introduced for

ease of generating the design velocity field and for efficiency of
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numerical calculation. The design velocity field is constructed using
local-othogonality imposed on a pre-set inner bounding surface, allowing
only non-zero velocity in one direction (normal to the inner bounding
surface). The velocity element idea provides convience and generality
to the boundary-layer approach, evaluating velocity and its derivatives,
using velocity shape functions.

The present work concentrates on testing the domain approach of
SDSA, using relatively simple structures such as a square box and a
truss-beam-plate built-up structure in which velocity fields can be
easily defined over the domain. A fillet is studied to generate a more
.general velocity field, using B-spljne and isoparametric mappings.
Results are quite encouriging. Tb‘épply the present method to more
general structures, velocity field specification throughout the domain
should be further studied.

Accubacy and efficiency of the boundary-layer approach depend on
size and location of thevboundary-1ayer in the domain. The present work
gives only guidelines for sizing and locating the boundary-layer. This
area should be futher studied to make the boundary-layer idea more

attractive.
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